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Abstract—How to filtering false positives is a fundamental 
problem of IDS. Constructing alert classification model is one 
of efficient methods. However, the high cost of preparing 
training data and classification feature selection are key points 
in the problem. This paper gives a semi-supervised alert 
classification model which makes use of the power of semi-
supervised learning. Moreover, four classification features 
about alert context are introduced to improve classification 
accuracy. Experiments conducted on the DARPA 1999 dataset 
show that the use of the alert context properties can increase 
the classification accuracy by about 3 percent. 

Keywords-alert classification model; semi-supervised 
learning; alert context 

I.  INTRODUCTION 

Alert classification model based on machine learning is 
an efficient method to filtering IDS false positives [1-2]. 
However, current alert classification models are built on the 
supervised learning techniques which require large amounts 
of labeled training data. It may need long time and expertise 
of network security to manually label the alert data.  

This paper proposes a semi-supervised alert classification 
model based on alert context. For classification, semi-
supervised learning is a special classification technique [3], 
which learns from labeled data and unlabeled data and thus 
can reduce dramatically the number of labeled data required.  

The power of semi-supervised learning for building 
classification model has been demonstrated in many 
applications such as web pages classification, documents 
classification, and traffic classification and so on. In the field 
of network security, semi-supervised learning has also been 
used [4-5]. However, to the best of our knowledge, we are 
the first to apply semi-supervised learning to intrusion alert 
classification. 

We have made a study on how to apply semi-supervised 
learning to alert classification in [6]. Different from it, this 
paper gives more details of the alert semi-supervised 
classification model and the pseudo code of EM algorithm. 
Moreover, this paper introduces alert context information as 
new classification features to improve the accuracy of 
classification model. Experiments are conducted to 
demonstrate the efficiency of the proposed classification 
model. 

The rest of the paper is organized as follows: Section 2 
gives the construction of semi-supervised IDS alert 
classification model, including the classification feature 
selection and details of the alert classification algorithm. 

Experiments are conducted in Section 3 with experimental 
results and analysis. In the end, the whole paper is 
summarized in Section 4. 

II. SEMI-SUPERVISED IDS ALERT CLASSIFICATION 

MODEL 

In this section, we first describe the feature selection for 
alert classification. Then we elaborate on the alert 
classification method based on semi-supervised learning. 

A. Feature Selection Based on Alert Context 

The performance of a classification model is greatly 
affected by the selected features used in constructing the 
model. Usually features used for classification are selected 
from the inherent property of alert. Some redundant, very 
specific or general properties are removed by some methods. 
Although the context information about alerts is not 
contained in the inherent properties, they also contribute to 
increase the accuracy of an alert classification model [1, 7]. 
Considering this, we also use some alert context information 
to select classification features. Four features on alert context 
used in this paper are as follows. 

(1) Alert history correlation degree. False positives 
generally tend to be more random and less likely to be 
correlated than true alerts [8]. This feature is introduced to 
measure the correlation degree between a given alert with 
other history alerts. 

Given alert X and alert Y, their alert correlation degree is 
calculated by (1). 

    ( , ) ( . , . )Corr X Y C X p Y p=                (1) 

Where C(X.p,Y.p) is the correlation degree of alert X and 
alert Y on the property p. The type of value p can be 
AlertType, SrcIP and DstIP, which represent the alert type，
the source IP address and the destination IP address 
respectively. 

The correlation degree of two alert types is determined 
by the logic causal relationship between them, which can be 
measured by the alert correlation matrix (ACM) [9]. Table 1 
illustrates an ACM example of four alert types a1, a2, a3 and 
a4. The value of cell C(ai,aj) in ACM represents the 
correlation degree of ai and aj where aj arrives after ai . Note 
that the correlation relationship between two alert types is 
relative to their arrival order. It satisfies C(ai,aj)≠C(aj,ai) 
where ai≠aj. 
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TABLE I.  ALERT CORRELATION MATRIX OF FOUR ALERT TYPES 

Alert Type a1 a2 a3 a4 

a1 C(a1,a1) C(a1,a2) C(a1,a3) C(a1,a4) 

a2 C(a2,a1) C(a2,a2) C(a2,a3) C(a2,a4) 

a3 C(a3,a1) C(a3,a2) C(a3,a3) C(a3,a4) 

a4 C(a4,a1) C(a4,a2) C(a4,a3) C(a4,a4) 

The correlation degree of two alert addresses (source 
address or destination address) is calculated by the formula 
C(ip1,ip2) = n/32, where n is the maximum number of high 
order bits that these two IP addresses match and 32 is the 
number of bits in an IP address. For example, if ip1 

=192.168.0.1 and ip2 =192.168.0.201, then n=24 and 
C(ip1,ip2)=24/32=0.75. 

Alert history correlation degree is the maximum value of 
all alert correlation degrees between current alert X and the 
alerts generated in time interval t before X. The value is 
computed as follows: 

      ( , ) ( ( , ))
j xt

j
Y D

MaxCorr X t Max Corr X Y
∈

=       (2) 

Where Dxt represents the history alert set consisting of all 
alerts reported in t time interval before the alert X. 

(2) The net type of IP address. It represents the type of 
net which the alert’s source or destination IP address belongs 
to, denoted by SrcIPnet and DstIPnet respectively. The value 
of the net type can be Internet, Intranet and demilitarized 
zone (DMZ). 

(3) The operation system of the attacked target. It means 
the type and version of the operation system running on the 
victim machine, denoted by DstIPOS. The value of this 
feature can be Windows 98(/NT/XP/2000/vista/7), Linux, 
UNIX, OS/2, Macintosh, and so on. The reason for selecting 
this information is that most attacks are only effective to 
some specific systems or services, which helps to classify 
alerts. 

(4) The device type of the attacked target. It is denoted as 
DstIPdev, and its value can be router, computer, server, 
workstation, switch, etc. 

B. Alert Classification Model 

Currently, there are many semi-supervised learning 
methods. This paper chooses generative models-based 
approach for its following remarkable advantages: (a) 
showing comparatively good effectiveness with small 
training sets, (b) using unlabeled data in parameter 
estimation, (c) simple to implement, and (d) efficient to train 
and use.  

As to our problem, we give an alert generative model in 
(3), where θ is parameter of the mixture 
model, jc C∈ 1 2 | |{ , ,..., }CC c c c=  represents the classes of 

alert data (only considers two class, i.e. C= {“true positive”, 
“false positive”}). P(cj|θ) is the class probabilities. P(xi|cj;θ) 
represents the probability distribution to generate an alert 
object when the mixture component is selected. 

          
1

( | ) ( | ) ( | ; )
C

i j i j
j

P x P c P x cθ θ θ
=

=        (3) 

The alert generative model is a probability model which 
explicitly states how the alerts are generated. It can also be 
considered as a joint probability distribution.  

Three basic assumptions about the generative process are: 
(a) the alert data are generated by a mixture distribution 
model; (b) it’s a one-to-one correspondence between mixture 
components and alert classes; (c) the features used for 
classification are independent with each other when the label 
is known. 

Since the features are conditionally independent of other 
features in the same alert when the class label is given, (3) 
can be further expressed as (4). 

      ,
1 1

( | ) ( | ) ( | ; )
i

C n

i j x k j
j k

P x P c P a cθ θ θ
= =

= ∏         (4) 

Suppose the estimated of parameters θ is θ , for a given 
alert object xi the probability that xi belongs to category cj 
can be calculated by (5): 

      
ˆ ˆ( | ; ) ( | )ˆ( | ; )

ˆ( | )

i j j
j i

i

P x c P c
P y c x

P x

θ θ
θ

θ
= =        (5) 

For an unlabeled alert object xi, its estimated class yi is 
the one which obtains the maximum value of the posterior 

probability, that is
1,...,| |

ˆarg max( ( | ; ))i j i
j C

y P y c x θ
=

= = . Suppose 

the labeled alert training data is Dl = {<x1,y1>, 
<x2,y2>,…, | | | |,

l lD Dx y< > }, and use the maximum a posteriori 

(MAP) estimate, we can find that  arg max ( | )lP Dθθ θ= . 
Here, more details of computation formula can refer to [4]. 

Now given the alert generative model and its estimated 
parameters calculated from labeled training alerts, it is 
possible to perform classification on unlabeled alerts. 
However, when there is only a small labeled alert training set, 
the classification accuracy will decline because variance in 
the parameter estimates of the generative model is high. 
Therefore, this paper proposes an EM algorithm, which 
utilizes both labeled alert training data and a lot of unlabeled 
alert data to improve the accuracy of parameter estimates. In 
order to describe the EM algorithm more convenient, we 
firstly give some relevant definitions. 

Definition 1: Weak labeled dataset. When the elements in 
unlabeled dataset Du are assigned labels by classifier, Du 
becomes a weak labeled dataset and denoted by Dp. Let 
unlabeled alert dataset Du= 1 2 | |{ , ,..., }

u

u u u
Dx x x , then its weak 

labeled dataset is Dp = 1 1{ ,u ux y< > , 

2 2,u ux y< > ,…, | | | |,
u u

u u
D Dx y< > }, where u

iy  is the predicted 

label for the alert object u
ix , where 1,2,...,| |ui D= . 
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Definition 2: Weighted labeled dataset. It consists of 
triples<xi,yi,pi>, where yi is the label of xi, pi represents the 
probability that xi is assigned the label yi ( 0 1ip< ≤ ). In this 
paper, pi is also called the weight of xi belonging to the class 
yi. According to this definition, both labeled dataset Dl and 
weak labeled dataset Dp have weighted labeled dataset. For 
the labeled dataset Dl, we assign every element in it a 
maximum weight 1. Thus the weighted labeled dataset of Dl 
is w

lD = {<x1,y1,p1>,<x2,y2,p2>,…, | | | | | |, ,
l l lD D Dx y p< > }, where 

pi=1, 1,2,...,| |li D= . And for the weak labeled dataset Dp, its 

weighted labeled dataset is w
pD = 

{ 1 1 1, ,u u ux y p< > , 2 2 2, ,u u ux y p< > ,…, | | | | | |, ,
u u u

u u u
D D Dx y p< > }, 

where pi satisfies 0.5 1ip≤ ≤ , and 1, 2,...,| |ui D= . 
Definition 3: Extended labeled dataset. It is a subset of 

weighted labeled dataset, in which the weight is equal or 
bigger than a given threshold value ρ , i.e. w

sD = {<xi,yi,pi> | 

<xi,yi,pi>   w
p iD p ρ∈ ∧ ≥ }. In the training process of 

classification model, both the extended labeled dataset and 
the labeled dataset are utilized. 

The pseudo code of EM algorithm based on alert 
generative model is in Fig. 1: 

 
Figure 1.  The EM algorithm based on alert classification model. 

III. EXPERIMENTS AND ANALYSIS 

A. Experimental Datasets 

A well-known IDS evaluation dataset, the DARPA 1999 
dataset is used to validate the proposed approach. The 
experimental process consists of preprocessing alert data, 
building alert classification model, and comparing with other 
typical methods based on the supervised learning. We use 
classification accuracy (CA) as evaluation criteria to measure 
the quality of the alert classification model. The formula is in 
(6). 

   | | | |
100%

| | | | | | | |

TP TN
CA

TP FP TN FN

+= ×
+ + +

         (6) 

Where TP is the true positives correctly classified, TN  is the 
false positives correctly classified, FP  is the true positives 
wrongly classified and FN  is the false positives wrongly 
classified. 

We adopt Snort to detect attacks and generate alerts by 
reading the inside tcpdump data files in five weeks. We call 
these generated alerts as raw alert data and record them into 
the MS SQL Server 2000 database. The total number of 
alerts generated by Snort 2.6 with default setting is 85902, 
and there are 82 different types of attacks among these alerts. 

When we label alerts prepared for the training of 
classification model, the alerts meeting the following criteria 
are considered as true alerts: matching the source IP address, 
matching the destination IP address, and alert time stamp in 
the time window in which the attack has occurred. All 
remaining alerts are labeled as false alerts. 

B. Results and Analysis 

Experiments are carried out to evaluate the effect of alert 
context properties on the accuracy of classification. Fig. 2 
shows results with the typical NB classification model. Fig. 3 
illustrates results with the proposed semi-supervised learning 
classification model. During experiments, we vary the 
number of labeled alerts used for training, which are 
randomly chosen from the labeled alert dataset. Each point in 
the curve represents an average classification accuracy of ten 
independent experiments. The results in the figures show that 
no matter which alert classification model is used, the use of 
the alert context properties can increase the classification 
accuracy by about 3 percent. 

Experimental results about the performance of semi-
supervised classification model can refer to [6]. 

Input: labeled alerts collection Dl, unlabeled alerts 
collection Du; 

Output: θ̂  that learned from both labeled alerts and 
unlabeled alerts; 

Let lD  w
lD ; w

sD = ∅ ; w w
t lD D= ; 

Learn an initial θ̂  from w
tD . Use maximum a 

posteriori parameter estimation to 

get ˆ arg max ( | ) ( )w
lP D Pθθ θ θ= . 

Repeat { 

Use the current θ  to estimate the label of each 
unlabeled alert in uD . 

Calculate the prediction marked alert dataset pD  and 

the weighted marked alert dataset w
pD . 

For (i = 1 to | w
pD |) { 

For the element , ,u u u
i i ix y p< >  of w

pD , if ( u
jp ≥ ρ ) 

then w
sD = w

sD ∪ { , , }u u u
i i ix y p< >  

} 
Extend the training dataset w

tD , let w w w
t t sD D D= ∪ . 

Use w
tD  to estimate the optimization classifier θ̂ , i.e. 

ˆ arg max ( | ) ( )lP D Pθθ θ θ= . 

} Until ( w
sD  with no significant changes) 
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Figure 2.  Classification accuracy of Naïve Bayes classification model 

 
Figure 3.  Classification accuracy of semi-supervised classification model 

 

IV. CONCLUSION 

Alert classification model based on machine learning is 
an efficient method to filtering IDS false positives. This 
paper proposes a semi-supervised alert classification model 
based on alert context to use both labeled data and unlabeled 
data and thus reduce the cost of manually labeling the alert 
data. Moreover, classification features on alert context are 
introduced to improve classification accuracy. Experimental 
results with the DARPA 1999 dataset show that the use of 
the alert context properties can increase the classification 
accuracy by about 3 percent. 
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