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Abstract--In particle swarm algorithm, the introduction of 
glowworm algorithm, according to domain to determine a 
perception range, within the scope of perception of all the 
particles find an extreme value point sequence, which apply 
roulette method, choose a particle instead of global extreme 
value.So as to scattered particle, and avoid the local 
minima.Experimental results demonstrate the feasibility and 
effectiveness of the method. 

Keyword-Particle swarm optimization;Glowworm swarm 
optimization; Constrained optimization.  

I. INTRODUCTION 

Particle Swarm Optimization (PSO) [1] is a 
population-based continuous optimization technique 
proposed by Kennedy and Eberhart. Like ant colony 
optimization algorithms or genetic algorithms, PSO is 
biologically inspired. In this case, the algorithm is inspired 
by the social behavior of animals living in groups. The 
algorithm simulates a simplified social milieu in a swarm 
of potential solutions (called “particles”), which means 
that a single particle bases its search not only on its own 
experience but also on the information given by its 
neighbors in the swarm. This paradigm leads to successful 
results and contributes to the popularity of PSO. But 
particle swarm algorithm itself trapped into local optimal 
solution easily，in order to solve the shortcomings, put the 
perception range of glowworm algorithm into PSO method, 
scattered particle method with roulette, avoid algorithm 
into the local extremum. 

II.  ALGORITHM INTRODUTION 

A. glowworm swarm optimization 

In GSO[3], physical agents { : 1, 2, , }i i n=   are 
considered that are initially randomly deployed 
{ (0) : , 1,2, , }m

i ix x R i n∈ =  in the objective function 

space
mR , each agent in the swarm decides its direction of 

movement by the strength of the signal picked up from its 
neighbors. This is somewhat similar to the luciferin 
induced glow of a glowworm which is used to attract mates 
or prey. The brighter the glow, the more is the attraction. It 
is inspired from this behavior; we come up with an 
intelligent algorithm of function optimization. In GSO 
algorithm, the glowworms in GSO are endowed with other 
behavioral mechanisms (not found in their natural 

counterparts) that enable them to selectively interact with 
their neighbors and decide their movements at iteration. 

Each glowworm i encodes the objective function value 
( ( ))iJ x t

 at its current location 
( )ix t

 into a luciferin 

value il and broadcasts the same within its neighborhood. 

The set of neighbors
( )iN t

of glowworm i consists of 
those glowworms that have a relatively higher luciferin 
value and that are located within a dynamic decision 

domain whose range
i

dr  is bounded above by a circular 

sensor range sr (0 )i
d sr r< <

. By the following formula 
to determine the numbers of glowworm within a dynamic 
decision domain: 

 
( ) { : ( ) ( ) ; ( ) ( )}i

i j i d i jN t j x t x t r l t l t= − < <
   (1) 

Where, 
( )jx t

 is the location of glowworm j at the 

t -th iteration, 
( )jl t

 is the luciferin value of glowworm 
j at the t -th iteration; 

Update formula of the dynamic decision domain as 
follows: 

( 1) min{ ,max{0, ( ) ( ( ))}}i i
d s d t ir t r r t n N tβ+ = + −

      (2) 

Where, 
( 1)i

dr t +
 is the decision domain of the 

glowworm i  at the ( 1)t + -th iteration (radius), sr is a 

circular sensor range, tn
 represents the neighborhood 

threshold, the parameter β  affects the rate of change of 
the neighborhood range. 

Luciferin-update formula: 
( ) (1 ) ( 1) ( ( ))i i il t l t J x tρ γ= − − +

          (3) 

Where, 
( )il t

 is the luciferin value of glowworm i  at 

the t -th iteration, (0,1)ρ ∈ represents control 

parameters, the parameter γ  only scales the function 

fitness values, 
( ( ))iJ x t

 is the objective function value. 
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    Each glowworm i  selects a neighbor j with a 

probability 
( )ijp t

 and moves toward it. According to (4) 
update the location. These movements that are based only 
on local information, enable the glowworms to partition 
into disjoint subgroups, exhibit a simultaneous 
taxis-behavior toward and eventually co-locate at the 
multiple optima of the given objective function. 

Location-update formula: 

( ) ( )
( 1) ( )

( ) ( )
j i

i i

j i

x t x t
x t x t s

x t x t

 −
 + = +
 −         (4) 

B.  Particle Swarm Optimization 
PSO is essentially a population-based algorithm. It 

starts with a random initialization of a swarm of particles. 
Each particle is modeled by its position in the search space 

and its corresponding velocity. In a d -dimensional search 

space, the position and the velocity of the i th particle can 
be represented as 

1 2( , , , )i i i idX x x x= 
and 1 2( , , , )i i i idV v v v= 

, 

respectively. Each particle i .The neighborhood of each 
particle can be chose using either a fixed topology, or 
time-varying topology, or a random topology .The quality 
of a given position is evaluated with respect to an objective 
function. 

Each particle i has its own best location 

1 2( , , , )i i i idP p p p= 
,which corresponds to the best 

location particle i  has reached until time k .The global 
best location is denoted by 

1 2( , , , )g g g gdP p p p= 
,which represents the best 

location reached by the neighbors of the i th particle. From 

time k  to time +1k , each velocity is updated using the 
following equation: 

1
1 1 2 2( ) ( )k k k k k k

id id id id gd gdv wv c r p x c r p x+ = + − + −
 (5) 

The computation of the position at time +1k  is given 
by: 

 
1 1k k k

id id idx x v+ += +
                                            (6) 

Where w  is a constant, called inertia weight, 1c
 and 

2c
 are constants called acceleration coefficients, and 1r  

and 2r  are two independent random numbers uniformly 
distributed in [0, 1] for each dimension at each time step. 
w  controls the influence of the previous direction of 

displacement. 1c
 controls the influence of the particle’s 

memory on the particle’s behaviors, and 2c
 controls the 

influence of the swarm on the particle’s behavior. The 

combination of the values of w , 1c
 and 2c

may favor 
either intensification or diversification. 

III. PARTICLE SWARM OPTIMIZATION 

ALGORITHM BASED ON THE GLOWWORM 

THOUGHT 

A. Described the Algorithm 
Specific means is: Set the sense range and particle 

threshold, by current particle as the center, sense range as a 
radius, form a regional, as shown in Fig. 1. Calculated the 

distance between the particles i and j , comparing with the 
pre-set threshold, if less than threshold and 

particles j fitness value is smaller. Record the serial 

number of particle j .if in the near particle i , no have better 
particle, thinks that this particle is a local excellent value. 
The particles were chosen as a local extreme value point 
sequence, what use roulette method, choose a particle to 

replace the global extremum pg . Find all particles 
extreme value point sequence through the comparison. 
Then use roulette method to disperse particles. Avoid into 
the local extremum.Penalty function using adaptive type 

penalty function method, (x)f :Goal function, 
(x)ig

and 
(x)fi are the constraint condition. as follow: 

2

1 1

( ) ( ) ( ) { (m ax[0, ( )] ( ) }
pN

i j
i j

x f x t g x h xλ
= =

Φ = + × + 
    (7) 

 
Figure 1. Sketch map of sense range 

B.  Algorithm steps 
Step 1 Initialization: velocity, position, maximum 

iterating times, particle swarm scale and accelerated factor 
etc; 

Step 2 Select qualified particles in the sense range，
composing an extreme value point sequence; 

Step 3 Sorting out by roulette method, one of extreme 
value point sequence particle replace global extreme 

value pg ; 
Step 4 With basic particle swarm algorithm searching, 

find out optimal value; 
4.1 Updated particle speed and position, and handled 

them if over the regional; 
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4.2 Updated the individual extremum; 
Step 5 Judge whether meet the end conditions, yes, turn 

step6, exit the loop, output the result; else, turn step2, 
continue to search; 

Step 6 Output target value and stop algorithm. 

IV. NUMERICAL SIMULATION AND ANALYSIS 
TABLE1.  Optimal solution of each algorithm for expansion rope 

 
Decision 
variables New  HPSO[11] CPSO[12] Ref. [5] Ref. [4] Ref. [6] Ref. [7] 

1( )x d  0.051667 0.051706 0.051728 0.050000 0.053396 0.051480 0.051989
2 ( )x D  0.355224 0.357126 0.357644 0.315900 0.399180 0.351661 0.363965

3( )x P  11.217496 11.265083 11.244543 14.250000 9.185400 11.632201 10.890522
1( )g x  0.000000 -0.001267 -0.000845 -0.000014 0.000019 -0.002080 -0.000013
2 ( )g x  -0.1451501 -0.003782 -0.000013 -0.003782 -0.000018 -0.000110 -0.000021
3( )g x  -4.051547 -3.938301 -4.051300 -3.938302 -4.123832 -4.026318 -4.061338
4 ( )g x  -0.728214 -0.756066 -0.727090 -0.756067 -0.698283 -04.026318 -0.722698
( )f x  0.0126652 0.0126652 0.012675 0.012833 0.012730 0.012705 0.012681

 
TABLE2.  Statistical results of each algorithm for expansion rope 

 

Methods Best Mean Worst Std. Dev. 

New 0.0126652 0.0126742 0.012754 6.3548e-6 

HPSO[11] 0.0126652 0.0127072 0.012719 1.5824e-5 
CPSO[12] 0.012675 0.012730 0.012924 5.198500e-5 

ref. [5] 0.012833 N/A N/A N/A 
ref. [4] 0.012730 N/A N/A N/A 
ref. [6] 0.012705 0.012769 0.012822 3.939000e-5 
ref. [7] 0.012681 0.012742 0.012973 5.900000e-5 

 
 

TABLE3.  Optimal solution of each algorithm for welded stripe 
 

Decision 
variables New 

HPSO[11
] 

CPSO[12] Ref.[9] Ref. [10] Ref. [6] Ref. [7] 

1( )x h  0.204845 0.205730 0.204381 0.2455 0.2489 0.2088 0.2060 

2 ( )x l  3.470145 3.470489 3.505107 6.1960 6.1730 3.4205 3.4713 

3( )x t  9.036641 9.036624 9.033546 8.2730 8.1789 8.9975 9.0202 

4 ( )x b  0.205729 0.205730 0.205878 0.2455 0.2533 0.21 0.2065 

1( )g x  -3.245e-008 -0.025399 
-12.83979

6 
-5743.82651

7 
-5758.60377

7 
-0.337812 -0.074092 

2 ( )g x  -4.4128e-006 -0.053122 -1.247467 -4.715097 -255.576901
-353.90260

4 
-0.266227 

3 ( )g x  
-5.45618e-00

9 
0 -0.001498 0 -0.004400 -0.0012 -0.000495 

4 ( )g x  -3.431148 -3.432980 -3.429347 -3.020289 -2.982866 -3.411865 -3.430043 
5 ( )g x  -0.079935 -0.080730 -0.079381 -0.120500 -0.123900 -0.0838 -0.080986 
6 ( )g x  -0.028574 -0.235540 -0.235536 -0.234208 -0.234160 -0.235649 -0.235514 

7 ( )g x  -2.802e-006 -0.033154 
-11.68135

5 
-3604.27500

2 
-4465.27092

8 
-363.23238

4 
-58.66644 

( )f x  1.724635 1.724852 1.728024 2.385937 2.433116 1.748309 1.728226 
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TABLE4. Statistical results of each algorithm for welded stripe 
 

Methods Best Mean Worst Std. Dev. 

New 1.724635 1.737210 1.765217 0.018745 
HPSO 1.724852 1.749040 1.814295 0.040049 
CPSO 1.728024 1.748831 1.782143 0.012926 

Ref. [9] 2.385937 N/A N/A N/A 
Ref.10] 2.433116 N/A N/A N/A 

Ref. [6] 1.748309 1.771973 1.785835 0.011220 
Ref. [7] 1.728226 1.792654 1．993408 N/A 

 
From table1, ( )f x  express that the elastic string is 

minimum; average solution and the standard deviation from 
this paper were less than literature algorithm. Also means 
that this paper algorithm(New) is stable, namely good 
robustness; and gets the worst solution smaller than HPSO 
algorithm slightly. 

E.g.2 Design problem for welded strip [8]: aim to seek 

four design variable s hT R L T、 、 、
and 4( )b x

to meet 
shear stress τ 、bending stressσ 、buckling load on the 

bar cP
、end deviation δ and boundary conditions. This 

problem is designed welded beam for minimum cost.  
From the table3, improved method better than literature 

algorithm, no matter the optimal solution, average solution 
and the worst solution, this again confirms the fact that the 
average performance of this paper algorithm better than 
other algorithms. 

V.  CONCLUSIONS 

This paper put perception range thought of glowworm 
algorithm applied to particle swarm algorithm; find out the 
extreme value point sequence within the scope, use roulette 
method to choose a particle as global extreme value. This 
method can overcome the defects that particle swarm 
algorithm into the local optimal solution easily. 
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