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Abstract—This paper presents a shuffled frog leaping 
algorithm (SFLA) with comprehensive learning strategy 
(SFLA-CL) for global optimization. This algorithm uses a 
novel learning strategy whereby all other frogs’ information of 
the memplex is used to update the worst frog’s position. The 
strategy enables the diversity of the memplex to be preserved 
to discourage premature convergence. SFLA-CL also 
introduces a new search learning coefficient into the 
formulation of the original SFLA to enhance the convergence 
performance of SFLA. SFLA-CL has been evaluated, in 
comparison with existing evolutionary algorithm, such as 
SFLA, particle swarm optimization (PSO) and fast 
evolutionary programming (FEP), on five mathematical 
benchmark functions. Experimental results demonstrate that 
the SFLA-CL performs much better than SFLA, PSO, and 
FEP in optimizing these benchmark functions, particularly, in 
terms of its convergence rates and robustness.  

Keywords-Evolutionary compution; Shuffled forg leaping 
algorithm; Comprehensive learning strategy; Particle swarm 
optimization; Continuous Optimization  

I.  INTRODUCTION 

Shuffled frog-leaping algorithm (SFLA) is originally 
developed by M. Eusuff and K. Lansey in 2003[1]. It 
combines the advantages of the genetic-based memetic 
algorithm (MA) and the social behavior-based particle 
swarm optimization (PSO) [2]. Recently, there have been a 
few papers that have reported results of the application of 
SFLA to various problems [3-7], ranging from the classical 
combinatorial optimization problem, such as the Travelling 
Salesman Problem (TSP), to speaker recognition, assembly 
line sequencing, water distribution network design and 
reactive power dispatch. The SFLA, in its original form, is 
easy to implement and has been empirically shown to 
perform well on unconstrained problems, but detailed 
analysis and suitable revisions are still needed to further 
explore its potential.  

In this paper, we propose a shuffled frog leaping 
Algorithm with comprehensive learning strategy (SFLA-CL). 
In order to improve SFLA performance on complex 
continuous optimization problems, we apply a new learning 
strategy which is involved comprehensive learning PSO [8]. 
Instead of using the frog with the best fitness as the 
exemplars, all frogs’ information of the memplex can 
potentially be used as the exemplars to guide the frog with 
the worst fitness leaping direction. Instead of learning from 
the same exemplar frog for all dimensions, each dimension 

of the worst frog in general can learn from different frog for 
different dimensions. In other words, each dimension of the 
worst frog may learn from the corresponding dimension of 
different frog. To further improve the search ability of SFLA, 
the frog’s leaping step size is adjusted by adding a search 
learning coefficient that pull the worst frog toward to speed 
up convergence. To demonstrate the merits of SFLA-CL, we 
have evaluated it on five mathematical benchmark functions 
which cover a range of optimization problems from uni-
modal and multi-modal to high dimensions. The algorithm 
evaluation has been undertaken in comparison with SFLA, 
PSO and fast evolutionary programming (FEP)[9]. The 
proposed algorithm is shown to be more superior in 
performance. Its strong global exploration ability makes its 
convergence speed very fast, and at the same time it is able 
to escape from local optima to obtain the global optimum.  

II. SHUFFLED FROG LEAPING ALGORITHM 

In SFLA, there is a population of possible solutions 
defined by a set of frogs (solutions) that is divided into 
different subgroups called memeplexes, each performing a 
local search. Within each memeplex, the individual frogs 
hold ideas that can be affected by the ideas of other frogs. 
After a defined number of memetic evolution steps, ideas are 
passed among memeplexes in a shuffling process. The local 
search and the shuffling process continue until defined 
convergence criteria are satisfied. 

In a D-dimension target searching space, generate 
randomly P frogs (solution) to compose initial population. 
The ith frog represents the solution of the problem Xi =(Xi1, 
Xi2 ,…, XiD ). Frogs are sorted in a descending order based on 
their fitness. Afterwards, the frogs are separated into m 
memeplexes, each containing n frogs (i.e. P=m×n). In this 
procedure, the first frog is distributed to the first memeplex, 
the second frog to the second memeplex, the mth frog to the 
mth memeplex, and the (m + 1)th frog to the first memeplex 
and so on. 

In each memeplex, the frogs with the best and worst 
fitness are determined as Xb and Xw, respectively. Also, the 
frog with the global best fitness among the memeplexes is 
determined as Xg. Then, a process is applied to improve only 
the frog with the worst fitness Xw (not all frogs) in each cycle. 
Accordingly, each frog updates its position to catch up with 
the best frog as follows: 

Frog leaping step update: 

  ( ) max max( ) ( )i b w irand D D•= − − ≤ ≤X XD D  
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Position update: 

 new w w i= +X X D   

Where rand( ) is a random number between 0 and 1; Dmax 
represents the maximum of update step allowed. If this 
process produces a better solution, it replaces Xw. Otherwise, 
Xb of (1) is changed to Xg and adapted to (1). 

 ( ) max max( ) ( )i g w irand D D•= − − ≤ ≤X XD D   

If the fitness of new Xw still hasn’t been improved, a new 
Xw will be generated randomly. 

 ( ) max min minnew ( )w rand •= − +X X X X   

 Repeat this update operation until satisfying the update 
number. 

After the local area deep-searching of all memeplex have 
been finished, to ensure global exploration, the whole 
memeplexes are mixed in the shuffling process. The local 
search and the shuffling continue until convergence criteria 
are satisfied.  

III. SHUFFLED FROG LEAPING ALGORITHM WITH 

COMPREHENSIVE LEARNING  

SFLA-CL uses a novel learning strategy whereby all 
other frogs’ information of the memplex is used to update the 
worst forg’s position. This strategy enables the diversity of 
the memplex to be preserved to discourage premature 
convergence. SFLA-CL also introduces a new search 
learning coefficient into the formulation of the original 
SFLA to pull the worst frog toward to speed up convergence.      

A. Comprehensive Learning Strategy 

In the original SFLA, the worst frog Xw learns from the 
best frog Xb in each memeplex or the global best frog Xg. 
However, because the worst frog Xw learns from the best 
frog Xb even if the current is far from the global optimum, 
frogs may easily be attracted to the region and get trapped in 
a local optimum if the search environment is complex with 
numerous local solutions. Liang proposed comprehensive 
learning strategy to improve the original PSO [8]. In [8], all 
particles’ are used to update the velocity of any one particle. 
This novel strategy ensures that the diversity of the swarm is 
preserved to discourage premature convergence. In order to 
make better use of the beneficial information, we propose a 
new learning strategy to improve the original SFLA based on 
[8]. 

In this new learning strategy, equation (2) can be 
modified as (5). 

 ( ) ( ) max max( )ij s j wj j ij jrand X XD D D D•=  − − ≤ ≤  (5) 

Where [ (1), (2), ( )]s s s Ds =   defines which the worst 
frog Xw should follow.  Xs(j) can be the corresponding 
dimension of any frog’s position including Xb. We employ 

the tournament selection procedure when the frog’s 
dimension Xw learns from another frog’s as follows. 

1) We first randomly choose two frogs out of the 
memplex. 

2) We compare the fitness of these two frogs and select 
the better one. 

3) We use the winner as the exemplar to learn from for 
that dimension. The details of choosing are given in Fig. 1. 

All these Xs(j) can generate new positions in the search 
space using the information derived from different frogs’ 
positions. To ensure that the worst frog learns from good 
exemplars and to minimize the time wasted on poor 
directions, we allow the worst frog to learn from the 
exemplars. We observe two main differences between the 
SFLA-CL and the original SFLA. 

1) Instead of using memplex’ Xb and as the exemplars, all 
frogs’ information can potentially be used as the exemplars 
to guide the worst frog’s leaping direction. 

2) Instead of learning from the same exemplar frog for all 
dimensions, each dimension of the worst frog in general can 
learn from different frog for different dimensions. In other 
words, each dimension of the worst frog may learn from the 
corresponding dimension of different frog. 

 
Figure 1.  Selection of exemplar dimensions for the frog with worst fitness. 

B. Search learning coefficient  

In the original SFLA, restricting the frog with worst 
fitness to jump toward Xb or Xg with a random number 
between 0 and 1 makes SFLA converge slow. In order to 
make SFLA converge faster, equation (5) can be modified as 
(6), and equation (3) can be modified as (7). 

 ( ) ( ) max max( )ij s j wj j ij jC rand X XD D D D•=  − − ≤ ≤   (6) 
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( ) max max( ) ( )i g w iC rand D D•= − − ≤ ≤ X XD D  (7) 

where C is a search learning coefficient. It is constant greater 
than 1 that represents the searching scale for frogs’ leaping 
step size. It is obvious that C cannot be set too large; 
otherwise, the local search tends to be lost in the random 
search with little improvement or even cause premature 
convergence. 

IV. EXPREMENTS AND RSULTS 

A. The benchmark functions  

In order to evaluate the performance of SFLA-CL, five 
widely used benchmark continuous functions selected from 
[9], are listed below. 

Sphere’s Function: 
30

2
1

1

( ) i
i

f x
=

=x  

where x∈[-100, 100]30 
Generalized Rosenbrock’s Function: 

29
2 2 2

2 1
1

( ) 100( ) ( 1)i i i
i

f x x x+
=

=  − + − x  

where x∈[-2.048, 2.048]30 
Generalized Rastrigin’s Function: 

30
2

3
1

( ) 10cos(2 ) 10i i
i

f x xπ
=

=  − + x  

where x∈[-5.12, 5.12]30 
Ackley’s Function: 

30 302
4 1 1

20exp 0.2
1 1

( ) exp cos 2 20
30 30i ii i

f x x eπ
= =

= − −
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 x  

where x∈[-32, 32]30 
Griewank’s Function: 

3030
2

5
1 1

1
( ) cos 1

4000
i

i
i i

x
f x

i= =

=
 − + 
 

 ∏x  

 where x∈[-600, 600]30 
In the experiment studies, SFLA-CL is evaluated on the 

benchmark functions in comparison with SFLA, PSO with 
constriction factors (PSO-cf)[10], and FEP. Here, the 
evaluation number of an objective function in each algorithm 
is adopted for comparison purpose. The total evaluation 
number for each algorithm, taken in a complete optimization 
process, is 200,000.  

B. Initialisation parameters setting 

For the shuffled frog-leaping algorithm, we follow the 
parameter settings in [11]. There are 20 memeplexes, each 
containing 10 frogs. The local exploration in each memeplex 
is executed for 10 iterations. The parameters settings for 
SFLA-CL are the same as those of SFLA, with Search 
learning coefficient C equal to1.5, which is was obtained 
through trial. For the PSO-cf, the cognitive and social scaling 
parameters, i.e., c1 and c2, are both equal to 1.4962; the 
inertia weight w is 0.7298; and the population size is set to 
40. For the FEP, we follow the parameter settings in [9].  

C. Experimental results  

SFLA-CL, SFLA, FEP and PSO-cf are used to optimize 
the benchmark functions respectively. Each algorithm ran 50 
times to give a mean value of the best solutions and a 
standard deviation obtained from the 50 runs. Table I 
demonstrates the results obtained by four algorithms applied 
on the five benchmark functions respectively. From Table I, 
it can be seen clearly that SFLA-CL can provide a better 
optimization solution with a much smaller deviation for three 
out of five benchmark functions, encompassing both uni-
modal and multi-modal problems with high dimensions. The 
merits and characteristics of SFLA-CL are discussed in 
comparison with SFLA, FEP and PSO-cf as follows. 
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Figure 2.  The median convergence charateristics of test functions. (a) 
Sphere function. (b) Rosenbrock’s function. (c) Rastrigin’s function. (d) 

Ackley’s function. (e) Griewank’s function. 

1) Convergence 
 Figures 2 show the convergence process of SFLA-CL, 

SFLA, FEP and PSO-cf respectively, conducted on the five 
benchmark functions. For a comparison purpose, we use the 
number of evaluations to plot the convergence performance 
of the four algorithms. All the figures illustrate the average 
best fitness in a population obtained from 50 runs of the 
program, which is plotted using a logarithmic scale in order 
to reduce the biggest and smallest values in the whole 
optimization process. 

SFLA-CL has also demonstrated a better ability of global 
searching for functions Sphere, Rastrigin, Ackley and 
Griewank. SFLA-CL performs almost as well as PSO-cf in 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0760



Rosenbrock. From the results presented in Table I, it can be 
seen that SFLA-CL performs the best in average for most of 
the benchmark functions. This is because that, the 
comprehensive learning and search learning coefficient of 
SFLA-CL enables its capability of searching global optimum 
in multi-modal continuous functions. 

2) Robustness 
In most of evolutionary algorithms (EAs), the algorithm 

robustness is a crucial issue, as EAs are based on stochastic 
research and random selections. Although the sensitivity to 
the initial positions and the instability in different functions 
have been noted during the course of the experiment studies, 
the experimental results show that the standard deviations 
obtained, for most of benchmark functions, by SFLA-CL are 
smaller than those obtained by SFLA, FEP and PSO-cf. 

V. CONCLUSIONS 

The novel SFLA-CL algorithm has been developed to 
improve the stability and global search ability for high-
dimensional continuous function optimization. In this 
algorithm, a novel learning strategy whereby all other frogs’ 
information of the memplex is used to update the worst 
forg’s position. This strategy enables the diversity of the 
memplex to be preserved to discourage premature 
convergence. And the frog’s leaping step size is adjusted by 
adding a search learning coefficient that pulls the worst frog 
toward to speed up convergence. SFLA-CL has been 
evaluated on five benchmark problems, which include uni-
modal and multi-modal functions in high dimension domains. 
The convergence rates and robustness of SFLA-CL have 
been well discussed in this paper. The experimental results 
have shown that SFLA-CL has superior performance in 
comparison with SFLA, FEP and PSO. Through the SFLA-
CL experiment studies, it has been seen that SFLA-CL 
possesses a great potential for global optimization of 
complex problems. 
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TABLE I.  COMPARISON RESULTS FOR FEP, PSO-CF, SFLA, AND SFLA-CL 

Function 
FEP 

Mean Best ± Std Dev 

PSO-cf 
Mean Best ± Std 

Dev 

SFLA 
Mean Best ± Std Dev

SFLA-CL 
Mean Best ± Std Dev 

Sphere 5.84e-06±2.13e-06 1.73e-34±9.56e-34 8.79e-02±1.04e-01 4.20e-63±2.94e-62 

Rosenbrock 3.03e+01±1.77e+01 1.99e+01±1.36e+01 2.84e+01±2.37e-01 2.20e+01±1.64e-01 

Rastrigin 4.44e+00±2.78e+00 5.25e+01±1.72e+01 1.07e+01±3.98e+00 7.87e+00±3.67e+00 

Ackley 9.87e-07±5.71e-07 1.49e-02±3.74e-02 8.85e-03±9.51e-03 1.35e-32±2.74e-48 

Griewank 7.79e-02±1.19e-01 1.49e-02±3.74e-02 1.09e-01±8.19e-02 5.53e-03±7.06-03 

 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0761




