
Real-time Simulation of Large Bodies of Ocean Surface Based on Tessellation and
Concurrent Kernels

Chen Si
College of Information Science and

Engineering
Ocean University of China
Qingdao, Shandong, China
Alex.sichen@gmail.com

Chunyong Ma
College of Information Science and

Engineering
Ocean University of China
Qingdao, Shandong, China
chunyongma@ouc.edu.cn

Ge Chen
College of Information Science and

Engineering
Ocean University of China
Qingdao, Shandong, China

gechen@ouc.edu.cn

Abstract—We present an automatic water simulation method
in large scale virtual environment that employed mesh based
approaches. To begin with, multi-hierarchy mesh is generated
using tessellation technique. Then, CUDA Concurrent Kernels
technique is implemented to make Fast Fourier Transform
(FFT) and Perlin noise, two ways used to compute sea height
map, execute concurrently. The results of these two approaches
were combined and used to generate the final sea height.
Finally, the illumination effect on sea surface and foam were
simulated. This method is successfully applied in VR-
GIS(Virtual Reality Geographic Information System)
Integrated Three-Dimensional Simulation Platform.

Keywords-CUDA; Fast Fourier Transform; Perlin Noise;
Tessellation; Concurrent kernels

I. INTRODUCTION

With the development of computer hardware and
computer graphics, the amount of data processed in the
three-dimensional virtual scene rise rapidly. The amount of
graphics unit required to draw by each frame increased
rapidly. Since the ocean surface is an important natural
element in three-dimensional virtual scene, rendering the
ocean surface efficiently and realistically becomes an
important research topic of computer graphics in recent
years.

Build-based simulation method can display the overall
characteristics of the water macroscopically, as well as
reflect the specific details of the water body to an acceptable
level. It is a hot area of large-scale ocean surface rendering
in recent years. There are two important issues need to be
resolved in build-based method: the mesh generation and
the calculation of ocean surface height map. In terms of
mesh generation, Yin [1] divided the ocean surface into
dynamic surface and static surface; Hinsinger [2] proposed a
trapezoidal mesh model; Johanson [3] proposed a projection
mesh model to establish a uniform mesh vertical to the sight,
and then project it onto the ocean surface of the world space.
Computing method of sea surface height map usually use
mathematical functions to construct sea wave's shape, which
can be divided into two categories: geometric modeling
based method and statistical co-spectrum based method.
Geometric modeling based method is relatively simple and
has easy controlled waveform, it mainly uses trochoid,
sinusoidal function and Beta-spline curve to stimulate the

geometric shape of waves [4-6]. One disadvantage of this
method is that the constructed wave is too regular to be
realistic. Statistical co-spectrum based method primarily
based on marine statistics and empirical model. Some
representative schemes utilize multiple sine function or FFT
to synthesis waves that meet the demand of spectral
distribution[7-8], or use the method of Perlin noise
composition.

In recent years, surface subdivision (Tessellation)
technique is paid more and more attention. Tessellation is a
technology which decompose polygon into small pieces to
enhance geometric fidelity. By means of model mesh
segmentation, it makes the model more refined. The
development of CUDA platform prompted the emergence of
the Concurrent Kernels, which can achieve overlapping
execution on two computational streams, take full advantage
of GPU resources and improve the efficiency of the parallel
computing.

In this paper, Perlin noise and FFT are mixed, realistic
rendering of large-scale ocean surface using CUDA general-
purpose computing platform and GPU shader is discussed,
and a complete ocean surface simulation method is
proposed. First we build the ocean surface using level
subdivided mesh model based on Tessellation technology;
then Perlin noise calculation and FFT calculation are
executed concurrently by the CUDA Concurrent Kernels.
The two results are mixed to generate wave height chart,
then the height of the mesh vertices are gotten using vertex
texture displacement technology; at last the ocean surface
illumination effect and other special effects are simulated,
including ocean surface reflection and refraction of light,
Fresnel phenomenon and the foam effect.

II. TESSELLATION SEA GRIDS MODEL

A tessellation self-adapting mesh model, viewpoint
related, is represented which segments mesh automatically
according to the distance between mesh and viewpoint.
Compared with the conventional LOD(Level of detail) mesh
model, this self-adapting model has two main characteristics:
subdivided mesh points are dynamically generated, without
processing; the tessellation procedure in GPU, so the
sufficiency is high. To be specific, multi-hierarchy mesh
structure is used to simulate sea surface which means that
basic mesh is divided into different regions where the
degree of tessellation is determined by the distance to the

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0766

viewpoint. First, the X-Z plane is identified as the mesh
plane, building up a mesh model as basic mesh with equal
interval through 3-D modeling software. Second, a
perpendicular is made from the position of viewpoint to the
mesh plane, defining the intersection as point C and
determining a previously segmented square region with
point C as its centre. Finally, this square region is divided
into some sub-regions, according to the distances between
sub-region frontiers and point C. Division levels are
determined, referring to the position of C, in other words,
the meshes closed to the C are segmented intensively and
vice versa. An example illustrating the hierarchy
subdivision is shown in Fig.1.

Figure 1. Segmented region is divided into two sub-regions: first class

region and second class region. The mesh density is of first region is higher
than base mesh, and is lower than that of second region.

In GPU tessellation pipeline, we process the base mesh
using Algorithm 1.

Algorithm 1 summarizes our tessellation mesh solver
Algorithm 1 Tessellation of mesh
1：Compute position Pproj for viewpoint Pview
2: for i = 0 up to Number of Quads do
3: Compute Pcenter of Qi
4: LODi =N- Distance(Pproj - Pview)/Dspan
5: Tess = sin((LODi * π)/(2*N)) * N
6: OutTess=Tess , InTess=Tess/2
7: GPU Tessellation()
8: end for

During each frame, the projection point of the view

point is calculated in CPU. Then the projection point is
passed into the GPU tessellation pipeline. Every quad on the
mesh experiences the tessellation process simultaneously
(lines 2 to 8). Specifically, the central position of each quad
is computed. We got a distance level between the central
position and the projection point. Then we can get the level
of LOD (line 4). To ensure the quads near the view point
more detailed while those far less, the sinusoidal function
has been employed to compute tessellation level (line 5).
Before the GPU fixed tessellation pipeline, the out

tessellation level and the inner tessellation level can get
from the basic tessellation level (lines 6 to 7).

Due to the differences of mesh resolutions in different
sub-regions, it is evitable to generate T-style fissure.

III. GENERATING HEIGHT MAP MIXED FFT AND PERLIN

The sea wave is implemented by assigning different
height value to every mesh point. These height values are
sampled from previously calculated height buffer.

After analyzing present sea height calculating models,
we find that Perlin approach has higher efficiency, and that
FFT method shows good performance especially in
illustrating the near-sighted details. During our experiments,
FFT approach based on Phillips Ocean Wave Spectrum
demonstrates realistic sea waving and interaction between
ocean surface and wind in near-sighted region, but when the
virtual scene becomes large enough and far-distance sea
waves are focused on, the repeated wave spectrums make
the wave simulation lack fidelity. In contrast, except for the
inadequate reality in the near-sighted side, the simulation
effect is acceptable as a whole, when using Perlin method.
In this paper, height map hybrid technique is employed,
which is like that: firstly each result of FFT computing and
of Perlin computing is abstracted as a height map
respectively, and then these two maps are mixed seamlessly
by using Hermite interpolation approach.

A. The Theoretical Basis of FFT

Equation (1) is expression of FFT obtained from wave
based statistical model and empirical model,

(,) (,) exp()
k

h p t h k t ik p= 
    (1)

where (,)h p t


 is the height field of sea surface,

(,)x zp p p= represents the position of mesh point, the t

means a time point, and k


is a wave vector.
This function explains a successive process of sea

surface height alteration. Since vertexes on the sea surface
mesh are discrete, so the values in (1) should be discrete and
constrained in a certain way. Assume that the mesh aspect
ratio of rendering cycle is :N M , then actual length-width
distance will be xL and zL . So the sea level of mesh

discrete vertex in XOZ plane will be (| |) | |w k g k= , where

two-dimensional vector (,)x zk k k=


 will be expressed by

(2 / , 2 /)x zk n L m Lπ π=


, n and m are both integer and

limited to / 2 / 2N n N− ≤ ≤ and / 2 / 2M m M− ≤ ≤

respectively. (,)h k t is the wave amplitude. When t=0,

0

1
() () ()

2
r i hh k i p kξ ξ= +

 

(2)

And in other general situation

*

0 0(,) () exp((| |)) () exp((| |))h k t h k iw k t h k iw k t= + − −
     

(3)

where (| |) | |w k g k= . Equation (3) shows that height
field only depends on the current fourier state, not results at
any other time. So this method achieves an efficient way to

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0767

calculate elevation map and is appropriate for parallel
computing in GPU.

B. The Simulation of Choppy Waves

On the real sea surface, the peak of wave is quite sharp,
but the trough is almost smooth. The general method to
achieve this result is to increase the height of the wave when
it peaks. Instead of changing the height field, mesh vertices
can just make horizontal movement to simulate this effect
using FFT method. The function below shows the process:

 (,)p p D p tλ= +  
 (4)

 (,)D p t


 is the horizontal translation amount:

(,) (,) exp()
| |k

k
D p t i h k t ik p

k
= −

    

(5)

p


 represents the sea horizon of mesh points, λ is a
constant controlling the horizontal displacement. The peak
of the wave will become sharper, while the trough is smooth,
when the value of λ is increasing gradually. This method
can make the wave even more real. It's important to note,
however, when the value of is λ oversize, there will
emerge overlapping phenomenon between the peaks. Then,
it is unable to express the sea height by the height function.
This paper adopts Jacobian Determinant to detect the
overlapping phenomenon which can measure the
extensional ratio of area element from p


 to (,)p D p tλ+ 

.
Therefore when a vertex has horizontal displacement, its
Jacobian Determinant is 1. And if it does not, the Jacobian
Determinant would be less than 1. Specially, if the
overlapping phenomenon occurs on this dot, the Jacobian
Determinant would be less than 0.

C. Detailed Implementation

Hermite interpolation function is used to integrate the
merits of FFT and Perlin, which means that in the near-
sighted region FFT results play a dominate role in sea height
while in the far-sighted region Perlin is the main influencing
factor. At the same time, the smooth change from near-
sighted regions to far-sighted regions has been guaranteed
safely. The interpolation details are showed in

 3 2min min

max min max min

2 () 3*()cur curD D D D
Ratio

D D D D

− −
= − ∗ +

− −
 (6)

where Dcur is the distance from mesh point to view
point, Dmin represents the minimum threshold value and
Dmax means the maximum threshold value.

The final sea height for each mesh point is computed in

(1)* *final FFT PerlinH Ratio H Ratio H= − +

(7)

where HFFT is the height of current mesh point
computed by FFT, HPerlin is one computed by Perlin, and
Hfinal is the final result mixed these two heights.

GPU Concurrent Kernels are use to execute FFT
computing process and Perlin computing process
simultaneously in GPU. In the CUDA operating mechanism,
a stream is a series of order executive instructions. A stream
can be divided into three processes: data transmitting from

host to device, kernel commanding and data transmitting
from device to host. Since in this paper the objective is to
solve the height map computing problems by both FFT and
Perlin, actually, the data size is not huge. The upper limit of
the memory size is 16 Mega Bytes, even if the resolution of
images is 2048*2048. Therefore, the main cost is in kernel
computing. Generally, devices which are upper CUDA 2.x
support overlap kernels, then CUDA computing resources
can be made full use of to improve efficiency.

As the Fig. 2 shows, FFT initial data and Perlin original
texture are generate in CPU. There are four streams used to
compute Perlin noise height map, Perlin noise normal map,
FFT height map and FFT normal map respectively in
CUDA where each two of them are concurrent. More
specifically, Perlin height map computing stream and FFT
height map computing stream are synchronous, while Perlin
normal map computing stream and FFT normal map
computing stream are synchronous. Finally, the computation
data will be transmitted into GPU shader. The sea surface
mesh will be generated after the computation by operations
such as Tessellation, displacement mapping, etc.

(,)h k t


(,)h p t


(,)D p t


Figure 2. The process of sea surface generating.

Step1: According to the (2), the initial amplitude value
can be computed after computing after computing the
Phillips frequency spectrum based on the wind vector and
the wave vector.

Step2: The original texture which used to conduct Perlin
noise computation is generated by transmitting initial high-
definition noise image into program.

Step3: CUDA Concurrent Kernels operations are
initialized. More specifically, Perlin height texture buffer,
FFT height texture buffer and FFT horizontal shift texture
buffer are assigned. Also, CUDA kernel computation units
are assigned to Perlin noise computation and FFT

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0768

Figure 3. Left: reflection Mid: refraction Right: foam

computation respectively. Then, Perlin noise height map
stream and FFT height map stream are conducted
synchronously through CUDA Concurrent Kernels
mechanism.

Step4: Equation (3) is used to compute FFT amplitude
value- (,)h k t

 . Then, horizontal offset texture - (,)D p t


 ,

and FFT height texture - (,)h p t


are calculated through (5)
and (6) respectively.

Step5: A couple of noise textures are generated by
sampling original noise texture in accordance with different
step lengths in different hierarchy. Combination of Perlin
height map is conducted by overlapping these noise textures
in different definitions.

Step6: Perlin noise normal texture buffer and FFT
normal texture buffer are assigned. Then, CUDA kernels
are distributed to Perlin normal map computation and FFT
normal map computation respectively.

Step7: The normal vector in each pixel is created from
the gradient vector which is generated through the gradient
computation of FFT height map.

Step8: Two vectors, which are along the x axis and
along the z axis respectively, for each pixel in Perlin height
map, are computed through calculating color differences
among the four pixels nearby. After that, every two vectors
are crossed to generate Perlin normal map.

Step9: Firstly, according to the distance between view
point and each mesh vertex, original mesh is subdivided in
GPU Tessellation shader. Additionally, (4) is employed to
translate mesh points. The sea surface map is created by
smoothly combining Perlin noise height map and FFT
height map. Finally, this map is sampled to compute the
final sea mesh through displacement map technique.

IV. LIGHT AND SPECIAL EFFECTS

In this paper, cube texture mapping technique, reflection
texture blending method and Phong shading model are used
to simulate the reflection effects of sky, sceneries above the
sea surface and sun respectively. In terms of surface
refraction, the submarine depth texture is generated by view
clipping and camera migration, and then sea surface
refraction effect is created by combining the submarine
depth texture and the sea color. Additionally, Fresnel law
has been introduced to mix surface reflection and refraction.
Finally, according to the result of Choopy calculation we
can confirm where and when to generate foam and time-
control system has been employed to simulate the rolling
and blanking of foam. Results show in the Fig 3.

V. RESULT

The configuration of experimental computer:
 CPU Intel Core i5, 2.80GHz,
 RAM DDR3,4G
 VGA Geforce GTX 450,1G, 1566MHz
 OS Windows7
The ultimate purpose of employing CUDA multi-

kernels parallel architecture is to improve the operation
efficiency of surface rendering. Furthermore, there are two
factors affecting efficiency significantly, which are the
mesh resolution and the sea surface height computing. So
we conducted contrast experiment on height map
computing under different resolution ratio. Then we picked
128*128, 512*512, 1024*1024, 2048*2048 resolutions
respectively to generate height map by Perlin and FFT.

The comparison experiment processed in CPU and GPU
respectively, and we calculated the time each frame costs.
As table 1 shows, when mesh resolution is lower than
1024*1024, the speedup of GPU, relative to CPU, is
increasing with the mesh resolution getting lager. However,
restricted by the quantity of registers in CUDA and parallel
unit, the speedup ratio of GPU is on a declining curve.

TABLE I. GPU SPEEDUP RATIOS OF DIFFERENT INITIAL MESH
RESOLUTIONS

Initial Mesh Resolution CPU(ms) GPU(ms) Speedup ratio

128*128 31.68 4.01 7.90

512*512 132.23 7.50 17.63

1024*1024 220.78 10.57 20.88

2048*2048 321.56 18.30 17.57

In general, GPU costs less than 20ms each frame, even
though the resolution is 2048*2048. The experimental
results show that the algorithm proposed in this paper has
very great applicable value in large-scale three-dimensional
scene. Containing over 1 million triangles, every virtual
scene, is rendered at 30 frames per second when the
definition of sea surface mesh is 2048*2048.

As the Fig. 4 shows, a large-scale sea surface scene is
constructed on VRGIS, a three-dimensional simulation
platform, to support the proposed algorithm. It contains lots
of three-dimensional scenes, like massive sea waves, wharfs,
buildings and terrains.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0769

Figure 4. The integration sea surface in virtual scenes

VI. CONCLUSION

This paper presents a view-dependent Tessellation
adaptive water surface mesh segmentation algorithm. Based
on fixed-size ocean surface mesh, the size of mesh is
adjusted by dynamically generate the surface mesh nodes,
the amount of computation of mesh sampling is optimized,
while the high definition detail is reflected on the sea
surface region which is near the viewpoint. Besides, Perlin
noise height map generation and FFT generation are
executed concurrently by the CUDA concurrent kernels on
the CUDA general-purpose computing platform. The highly

parallel computing and easy access of graphics card are
fully exploited to accelerate ocean surface height map
calculation. The efficiency of the entire simulation is
improved and the application effects show the method has
good application prospect.

REFERENCES
[1] Yin Y;Jin Y C;Ren H X Wave simulation of visual system in marine

simulator based on wave Spectrums.

[2] Hinsinger D, Neyret F, Cani M P. “Interactive animation of ocean
waves” Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Anication, San Antonio, 2002,pp. 161-166.

[3] Johanson C. Real-time water rendering: introducing the projected
gird concept [D]. Lund: Lund University, 2004.

[4] Fournier A, Reeves W T. “A simple model of ocean waves”. ACM
SIGGRAPH Computer Graphics, 1986, 20(4), pp. 75-84.

[5] Peachey D R., “Modeling waves and surf,” ACM SIGGRAPH
Computer Graphics,1986, 20(4), pp.65-74.

[6] Thon S, Dischler J M, Ghazanfarpour D. “Ocean waves synthesis
using a spectrum–based turbulence function” Proc.International
Conference on Computer Graphics, Geneva, 2000,pp. 65-72.

[7] Tessendorf J. “Simulating ocean water”Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, Los
Angeles,2001,pp. 1-18.

[8] Fréchot J. “Realistic simulation of ocean surface using wave spectra”
Proceedings of the 1st International Conference on Computer
Graphics Theory and Applications, Setúbal, 2006,pp. 76-83.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0770

