
Application Of Boundary Element Method To Predicting The Aerodynamics 
Coefficient Of Aircraft With Arbitrary Shape Cross Sections 

Wan Weiyu 
Beijing Electro-mechanical Engineering Institute 

Beijing , China 
e-mail: vodkabuaa@yahoo.cn 

Li Changwen 
Beijing Electro-mechanical Engineering Institute 

Beijing , China 
e-mail: 13681220376@139.com 

Pan Xinghua 
Beijing Electro-mechanical Engineering Institute 

Beijing , China 
e-mail: panxinghua628@qq.com 

 
 

Abstract—This paper introduces an application of boundary 
element method for predicting the aerodynamics coefficient of 
aircraft with arbitrary shape cross sections. Aerodynamics 
coefficient of noncircular body is evaluated based on this 
method. Comparing with the method adopted by McDonnell 
Douglas Astronautics Company, a more accurate prediction is 
achieved based on the Boundary Element method. Combining 
this method with Component Build-Up method, the 
aerodynamics coefficient of aircraft is calculated, which can 
satisfy the aerodynamics design of concept stage. A surrogate 
model is developed based on design of experiment and radial 
basis function, which can improve the efficient of this method 
significantly. 

Keywords-boundary element method; noncircular cross 
section; aerodynamic prediction; surrogate model 

I.  INTRODUCTION  

For preliminary aircraft design, the aerodynamic analysis 
method requires to be fast , low cost and relatively high 
accuracy. Component build-up method (CBM) which 
assembles a variety of theoretical and empirical methods is 
one of the most effective methods for preliminary 
aerodynamic design of the circular body. However, it is not 
effective for noncircular body. Computational Fluid 
Dynamics (CFD) which can achieve high accuracy is 
adopted in this area, but the computational efficiency is low. 
Especially for preliminary design, the designers choose the 
aerodynamic shape from various shapes. If the aerodynamic 
calculation cost much time, the design period will be 
extended obviously. 

In the 1980s, lots of notable investigations have been 
done in aerodynamic design of arbitrary missile bodies by 
McDonnell Douglas Astronautics Company. The 
investigations demonstrate the linearized potential equation 
is solved based on Brown’s method and Hess&Smith method 
respectively, from which aerodynamic forces and moments 
are calculated. In addition, computer codes named Low 
Observables Design Synthesis Tool (LODST) are available 
to calculate arbitrary body aerodynamics. 

The boundary element method (BEM) is an effective and 
powerful numerical method used to solve the partial 
differential equation, the Kernel Idea of which is the 
transformation of the integrative domain and the 
discretization of the boundary. The transformation of 
integrative domain means transforming the full domain into 
the boundary, which can reduce the time of calculation. The 
discretization of the boundary means discretizing the 
boundary into many nodes, which can transform the integral 
operation into matrix operation. 

This paper will focus on four topics. The methods 
considered for the calculation of the additional apparent mass 
of the arbitrary shape body based the BEM  is emphasized in 
the first part. The calculated results are compared with the 
results of Hess&Smith method and the experimental data, 
and the accuracy is discussed in the second part. A approach 
for the calculation of aircraft aerodynamics is proposed with 
the combination of BEM and CBM in third part. For the 
improvement of the calculation efficiency, a surrogate model 
of the aerodynamics calculation is developed based on 
design of experiment and radial basis function in the last part. 

II. BOUNDARY ELEMENT METHOD FOR APPARENT  

AREA CALCULATION 

A. The concept of Apparent Area Calculation 

For a slender body, if the velocity perturbation in all 
there orthogonal directions is very small, the velocity 
potential within a sheet of fluid results in Laplace’s potential 
equation. 

yy + =0zzΦ Φ                                     (1) 

Ward introduced a new application of slender body 
theory using the concept of added mass, based on which the 
relationship of the body force and the apparent area is 
derived. 
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Z is the yawing force and N is the normal force. A11 and 
A22 is the apparent area of the body section. 

From (2) and (3), if the A11 and A22 is calculated, the 
body force can be achieved, moreover, the aerodynamics 
coefficient can also be calculated. 

The apparent area terms of two dimensional cross 
sections are defined 

= i
ij i

s

A ds
ΦΦ ∂
∂ n                                   (4) 

So the A11 and A22 can be express as 

1
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Where 1Φ is the velocity potential in y axis direction of 

the body axis system, 2Φ is the velocity potential in z axis 
direction of the body axis system, s is the curve of the body 
section boundary. n denotes the unit vector outward normal 
to s.   

Discretizing the boundary of the integral domain s, the 
discretized form of integral (5) (6)are expressed as: 
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Where N is the number of the boundary nodes, i is the 
index of the nodes. 

From (7) (8), the calculation of A11 and A22 only requires 

the value of the iΦ  and iΦ∂
∂n

in every boundary node which 

is governed by Laplace’s equation 
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So if the Laplace’s equation is the solved, the A11 and A22 
will be evaluated. 

B. Apparent Area Calculation based on BEM 

The finite element method (FEM) is, in general, a 
versatile and effective method for solving nonlinear 
problems. The disadvantages of FEM are that large 
quantities of data are required to discretize the full domain, 
which is tremendous time-consuming and memory-
consuming. The boundary element method (BEM) is a 
approach to overcome the disadvantages of FEM, which can 
reduce the calculation time significantly. The kernel idea of 
the BEM is the transformation of the integrative domain and 
the discretization of the boundary. 

Using Green’s second theorem, the Laplace’s equation 
(9)(10)can be transformed into the integration form as below 

+ =i q d qd
Γ Γ

Φ Φ Γ Φ Γ∗ ∗                      (11) 

The (11) demonstrates that the integral domain was 
transformed from the whole fluid domain into the boundary. 

Thus the value of the iΦ in ( , )i ix y of the fluid domain can be 
expressed in the form of boundary integral. 

The discretization of the boundary means discretizing the 
boundary into segments with many nodes, which can 
transform the integral operation into matrix operation. 
Discretizing equation (11) for source i yields the following 
expression 
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Equation (12) can be simplified into 
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Define 
1ˆ= +
2ij ij ijH H δ                            (16) 

Where ijδ is the Kronecker function, 

1 =
=

0ij
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i j
δ 

 ≠
                            (17) 

Equation (15)becomes 

=1 =1

= ( 1,2, )
n n

ij j ij j
j j

H G q i nΦ =                (18) 

Equation (18) can be expressed in matrix form as 
HΦ = GQ                                  (19) 

Since elements of H and G can be calculate by Gauss 
quadrature，equation (19) can be inverted to obtain Φ ，i.e. 

+Φ = H GQ                                (20) 
It is noted that H is, in general, a singular matrix, the 

invert of which can be calculated based on generalized 
inverse method. Notice that the normal velocity component 

iΦ∂
∂n

can be obtained according to (9) (10), so the A11 and A22 

can be calculated. 

C. Comparison of BEM And Hess&Smith’s Method For 
Noncircular Section 

For small angle of attack and small velocity perturbations, 
the flow boundary conditions will not be violated, which 
satisfies the restrictions associated with the slender body 
theory. Thus the force on the body of the noncircular section 
aircraft can be evaluated with the calculation of apparent area. 
The methods for calculating the apparent area adopted by 
McDonnell Douglas Astronautics Company is Hess&Smith’s 
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method, which has proven reliable and suitable for 
calculating the apparent area. The source point are located 
inward the cross section. Calculating the effect of each 
source point upon the normal velocity of each test point 
located on the boundary will results in a square influence 
matrix. The unknown source are calculated from the matrix, 
which determine the velocity potential at each test point, and 
(5)(6)is integrated to provide the apparent area. 

Table1 provides analytic expression for the apparent 
areas of four different cross-sections. The numerical result 
from each equation is compared with the value obtained 
from the method of BEM and the method of Hess&Smith 
respectively. 

All computer generated values used 50 test points. 
Compared with Hess&Smith’s method, the results of BEM 
are more consistent with the analytic results, which verify the 
efficiency of BEM. 

III. AERODYNAMICS COEFFICIENT OF AIRCRAFT WITH 

ARBITRARY SHAPE CROSS SECTIONS PREDICTIONS 

An approach for Aerodynamics coefficient of aircraft 
with arbitrary shape cross sections predictions is proposed in 
this section. The Component Build-Up method is referenced 
in the approach, that calculates the aerodynamics of aircraft 
components respectively and build them up. The 
aerodynamics coefficient of non-circular body is calculated 
based on BEM, and the coefficient of wings and rudders is 
evaluated based the theoretical and semi-empirical methods. 
It is noted that there is no experimental data of the 
interruption coefficient of the body, the coefficient of 
equivalent area of circular is adopted in this paper. 

The lift coefficient and drag coefficient are evaluated 
based on this approach for aircraft with two different wings 
respectively. The results are plotted and compared with wind 
tunnel data in figure 3-1 and figure 3-2. 

The results show a good agreement between computed 
data and wind tunnel data. In fact, there is a very little 
difference in lift and drag coefficients between computed 
data and wind tunnel data at angle of attack from 0°to8°
and the largest different are computed at -4°angle of attack. 
The reason of the difference is caused by the anomalous nose 
of the aircraft which not satisfies the slender body theory. 

IV. SURROGATE MODEL BASED ON LATIN HYPERCUBE 

TECHNIQUE AND RBF 

A. Latin Hypercube Technique  

The Latin Hypercube technique is a class of experimental 
designs that efficiently samples large design spaces. The 
design space for each factor is divided uniformly (the same 
number of divisions, n, for all factors). These levels are 
randomly combined to specify n points defining the design 
matrix (each level of a factor is studied only once). 

For example, "Latin Hypercube Configuration for Two 
Factors with Five Points" illustrates a possible Latin 
Hypercube configuration for two factors (X1, X2) in which 
five points are studied. While not as visually obvious, this 
concept easily extends to multiple dimensions. 

 

Figure 1.  Latin Hypercube Configuration for Two Factors with Five 
Points 

An advantage of using the Latin Hypercube technique 
over the Orthogonal Arrays technique is that more points and 
more combinations can be studied for each factor. The Latin 
Hypercube technique allows the designer total freedom in 
selecting the number of designs to run (as long as it is greater 
than the number of factors). A drawback to the Latin 
Hypercubes is that they are not reproducible because they are 
generated with random combinations. In addition, as the 
number of points decreases, the chances of missing some 
regions of the design space increases. 

B. Radial Basis Function 

Radial Basis Function approximation is a type of neural 
network employing a hidden layer of radial units and an 
output layer of linear units. RBF approximations are 
characterized by reasonably fast training and reasonably 
compact networks. They are useful in approximating a wide 
range of nonlinear spaces.  

Let 1, n
Nx x R∈ be a given set of nodes. 

Let g = ( - ) , =1,2,j jg x R j Nx ∈  be a set of any radial basis 

functions. Here jx - x  is the Euclidian distance given 

by T
j jx - x x - x（ ）（ ）. Given interpolation values 1, Ny y at 

data locations 1, Nx x , RBF interplant 

( ) ( ) 1
1

N

j j N
j

F x g xα α +
=

= +                         (21) 

is obtained by solving the system of N+1 linear equations 

( ) 1
1

1, , ,
N

j j N i
j

g x y i Nα α +
=

+ = =                 (22) 

1

0
N

j
j

α
=

=                                           (23)  

for N+1 unknown expansion coefficients jα . 

Hardy (1972, 1990), the primary innovator of the RBF 
Method, adds a constant to the expansion and constraints the 
sum of the expansion coefficients to zero as seen in (21)(22), 
introducing the notation 
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We can rewrite (22) (23) in the matrix form as 

 Hα = y                                    (24) 
Then the interpolation expansion coefficients are given 

by 
 -1α = H y                                   (25) 

The derivatives of the interplant can be easily found at 
the nodes ix . For example, 

 ( ) ( )' '

1

1, ,
N

j j i
j

F x g x i Nα
=

= = ，               (26) 

( ) ( )'' ''

1

1, ,
N

j j i
j

F x g x i Nα
=

= = ，               (27)  

Because model physics can vary, a different type of basis 
function would be needed to provide a good fit. The response 
surface goes through all the given interpolation data. 

C. Surrogate Model For Aerodynamics Coefficient 
Prediction 

The surrogate model is a kind of approximation used in 
place of the original code to facilitate the analysis. The 
development of the surrogate model requires DOE and 
approximation methods. 

A surrogate model for aerodynamics coefficient 
prediction is generated based on the Latin Hypercube 
technique and RBF. Six parameters (span, chord, sweep 
angle, velocity, altitude and attack of angle) are defined as 
factors to study. 1000 sample points are selected and 
calculated based on Latin Hypercube technique for 
generating the design matrix, then the surrogate model is 
derived based on RBF. This method is verified by comparing 
with original model, and the results are shown in Fig. 1. The 
time cost of the surrogate model is only 1/5 of the original 
model. The relative error of the drag coefficient is below 7% 
and the relative error of the lift coefficient is below 1%. 

 
(a) Drag coefficient vs alpha 

 
(b) Lift coefficient vs alpha 

Figure 2.  aerodynamics coefficient comparing between Surrogate model 
and original model 

V. CONCLUSION 

A method for predicting the aerodynamics coefficient of 
aircraft with arbitrary shape cross sections is propose based 
on boundary element method and Component Build-Up 
method. The results show a good agreement between 
computed data and wind tunnel data, which can satisfy the 
requirement of accuracy in concept design stage. A surrogate 
model is derived based on Latin Hypercube technique and 
Radial Basis Function, which do not reduce the calculation 
accuracy and improve the calculation efficiency. This 
method appears sufficient to predict aerodynamics 
coefficient of aircraft with arbitrary shape cross sections in 
concept design stage. However, the wing-body interference 
is considered the same as the body with circular section, 
which is lack of theory foundation and should be researched 
in future work. 
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TABLE I.  COMPARISON OF BOUNDARY ELEMENT METHOD AND HESS&SMITH METHOD FOR APPARENT AREA 
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(a)Drag coefficient vs alpha of wing 1                                (b)Drag coefficient vs alpha of wing 2 

Figure 3.  Drag coefficient vs alpha of two different wings 

                               
                                                (a)Lift coefficient vs alpha of wing 1                                  (b) Lift coefficient vs alpha of wing 2 

Figure 4.  Lift coefficient vs alpha of two different wing 
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