
Cubic with Faster Convergence: An Improved Cubic Fast Convergence Mechanism 

Ning Cao 
Dept. of Computer Science & Technology 

East China Normal University 
Shanghai, China 

caoning1985@hotmail.com 

Wei Zhang 
Dept. of Computer Science & Technology 

East China Normal University 
Shanghai, China 

wzhang@cs.ecnu.edu.cn
 
 

Abstract—Cubic TCP [1] is a high-speed TCP variant protocol 
which has been the default TCP implementation in Linux since 
kernel-2.6.18. In high bandwidth-delay product environment, 
it can achieve a full utilization of the available bandwidth. 
However, Cubic TCP has a shortcoming in terms of 
convergence speed [4]. In this paper, we verify the slow 
convergence problem of Cubic TCP on testbed. After that, we 
propose an improved fast convergence mechanism which is 
called Cubic with Faster Convergence. The feature of this new 
mechanism is that we use a new bandwidth releasing method 
instead of simply cut down ssthresh directly. Testbed 
experiments show that this new mechanism can significantly 
reduce the convergence time, at the same time, do not affect 
other performance of Cubic TCP. 

Keywords-Congestion Control; Cubic TCP; Fast 
Convergence 

I.  INTRODUCTION 

TCP (Transmission Control Protocol) provides a reliable 
data transmission mechanism. Most of the applications use 
TCP to transmit data over the Internet. However, it has been 
reported that standard TCP substantially underutilizes 
network bandwidth over high-speed and long distance 
networks [2]. To solve this problem, researchers have been 
proposing a variety of TCP variant protocols. As the default 
TCP implementation of Linux since kernel-2.6.18, Cubic 
TCP is the most widely used TCP variant. It replaces the 
linear increase function of standard TCP with a cubic 
increase function, and the increasing of cwnd is RTT 
independent. Because of these characteristics, the growth of 
cwnd in Cubic is more aggressive, so it can gain more 
bandwidth in high bandwidth-delay product environment. 
But these characteristics also cause the problem of slow 
convergence i.e. when a new Cubic flow shares the same 
bottleneck link with an existing Cubic flow, it takes a long 
time to achieve fair bandwidth allocation. The author of 
paper [3] verified this shortcoming of Cubic on Dummynet 
testbed. 

Convergence time is an important metric of TCP: with 
shorter convergence time, new users can get fair network 
resource faster; also, when a new flow joins into the network, 
the local stability of this network system is perturbed from its 
stable state [4], the less convergence time TCP needs means 
the network system can return toward the locally stable state 
quicker. So, it not only can improve the fairness of the 
allocation of network resource, but also can improve the 
stability of whole network system.  

In this paper, an improved Cubic fast convergence 
mechanism is proposed, which is called Cubic-FC (Cubic 
with Faster Convergence). This new mechanism does not 
change the increasing function of Cubic but divides the 
congestion avoidance into two phases: 1) competition 
detection phase; and 2) bandwidth releasing phase which 
uses a new bandwidth releasing method.  

The rest of paper is organized as follows: Section II 
briefly describes Cubic TCP and its fast convergence 
mechanism. Section III elaborates our new fast convergence 
mechanism. Section IV gives the detail of the setup of our 
testbed and experiments result. Finally, conclusions are 
provided in Section V. 

II. CUBIC TCP 

The most important feature of Cubic TCP is that it uses a 
cubic window increasing function of the elapsed time from 
the last windows reduction: ሺܹ௧ሻ ൌ ܥ ∗ ሺݐ െ ሻଷܭ ൅ ௠ܹ௔௫ 

where C is a Cubic parameter, t is the elapsed time from 
the last loss event, and K is the time period that the above 
function takes to increase ሺܹ௧ሻ  to ௠ܹ௔௫  when there is no 
further loss event. K is calculated by using the following 
equation: ܭ ൌ ඨ ௠ܹ௔௫ ∗ యܥߚ

 

where β is the window decrease constant. 
From the above cubic function, we can learn: when 

current cwnd is less than ௠ܹ௔௫, the increasing of cwnd is a 
convex curve; when current cwnd is more than ௠ܹ௔௫ , the 
increasing of cwnd is a concave curve. This divides the 
growth process of cwnd into “Steady State Behavior” and 
“Max Probing”. The curve of cwnd is shown in Fig. 1. 

 

Figure 1.  The curve of congestion window of Cubic 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0840



Cubic executes the fast convergence algorithm when 
congestion is detected. Firstly, it determines whether the 
cwnd of current loss event (loss_cwnd) is less than the last ௠ܹ௔௫  : if it is, it updates ௠ܹ௔௫ to ݈݀݊ݓܿ_ݏݏ݋ ∗ ଶିఉଶ ; 
otherwise, ௠ܹ௔௫ is set to loss_cwnd. After that, Cubic sets 
ssthresh to ݈݀݊ݓܿ_ݏݏ݋ ∗ ሺ1 െ  .ሻ, as shown in Fig. 1ߚ

In a stable network environment, we assume that the 
maximum cwnd of a TCP flow is ௠ܹ௔௫:௅௜௠௜௧ We can learn 
from the windows growth function of Cubic that when 
getting close to ௠ܹ௔௫:௅௜௠௜௧ , cwnd’s increasing rate in the 
“Max Probing” status is greater than it in the “Steady State 
Behavior” status. In Fig. 1, ݐ଴ ଵݐ , ଶݐ , ଷݐ ,  are the moments 
when congestion happens. Before time ݐଵ , Cubic is in the 
“Steady State Behavior” status and it is in the “Max Probing” 
status before time ݐଶ , the congestion window at time ݐଵ  is 
smaller than the congestion window at time ݐଶ. Also, we can 
get that ܿ݀݊ݓ௧బ ൐ ௧భ݀݊ݓܿ  and ܿ݀݊ݓ௧మ ൐ ௧య݀݊ݓܿ , which 

leads that ௠ܹ௔௫of phase P1: ௠ܹ௔௫:௉ଵ ൌ ௧భ݀݊ݓܿ ∗ ଶିఉଶ , and 
Wmax of phase P2: ௠ܹ௔௫:௉ଶ ൌ  ଶ. This kind of effect is݀݊ݓܿ
mutual which leads to the periodical execution of these two 
different kinds of growth.  

We took an experiment on our testbed to test the 
convergence time of Cubic. Fig. 2 shows the curves of cwnd 
of two Cubic flows. As we can see, Cubic needs about 400s 
to get to the convergence status. 

Because flows with larger cwnd’s are more aggressive 
than flows with smaller cwnd’s, they can gain more 
bandwidth than flows with smaller cwnd's within the same 
time. New flows are thus at a disadvantage and sustained 
unfairness can occur. “Slow convergence” is considered a 
general problem in other high-speed TCP variant protocols 
[5]. 

III. CUBIC-FC: CUBIC WITH FASTER CONVERGENCE 

As the description in section II, ௠ܹ௔௫  of phase P2 is 
greater than phase P1, it leads to the fact that the duration of 
P2 is much less than P1, so cwnd in phase P2 can arrive to 
the window limitation faster. Such growth pattern is suitable 
for maintaining the bandwidth already obtained. As the 
duration of P1 is much longer, cwnd needs more time to get 

to the window limitation, which makes phase P1 suitable for 
probing competitive flows and releasing bandwidth. We take 
advantage of this feature of Cubic and divide the congestion 
avoidance of Cubic into two phases: competition detecting 
and bandwidth releasing. The cwnd curve of our mechanism 
is shown in Fig. 3. 

A. Competition detection 

In this phase, Cubic-FC detects whether there is (are) 
competition flow(s) on the bottleneck link, and calculate the 
decrement of cwnd (Δ) at the end of this phase, as shown in 
Fig. 3. If Δ is bigger than ݈݀݊ݓܿ_ݏݏ݋ ∗ , where σ is small 
parameter (0<σ<0.1), it means that competition flows may 
exist on the bottleneck link. In the next bandwidth releasing 
phase, Cubic will release a certain amount of bandwidth that 
calculated by this Δ. 

As we described before, it takes more time in CP1 phase, 
flow in this phase would more likely be influenced by short-
term burst, which makes cwnd at ݐଵ  may not accurately 
reflect the competition on the bottleneck link. To minimize 
the possibility of this situation, we use CP2 phase to confirm 
the decrement of cwnd, that is Δ=min{ܿ݀݊ݓ௧బ െ ௧మ݀݊ݓܿ , ∆௠௔௫ }, where ∆௠௔௫  is the maximum of the decrement of 
cwnd, and  ∆௠௔௫ൌ ݀݊ݓܿ_ݏݏ݋݈ ∗  ߚ

B. Bandwidth releasing 

The convergence speed of TCP depends on two factors 
[3]: a) the rate at which individual flows release bandwidth 
when informed of congestion; and b) the rate at which 
individual flows acquire available bandwidth. The increasing 
function of Cubic is aggressive enough so that it is not 
necessary to adopt a more aggressive method. To reduce the 
convergence time, the only way is to select an appropriate 
method to release bandwidth.  There are two ways to release 
bandwidth: a) using a bigger decrease parameter when 
informed of congestion; and b) slowing down the increasing 
in congestion avoidance. We take advantage of both of these 
two methods in our mechanism, when detected competition 
flows: 

• Set ssthresh to ݈݀݊ݓܿ_ݏݏ݋ ∗ ሺ1 െ ሻߚ െ ݂ሺ∆ሻ ∗ ∆௠௔௫  
instead of ݈݀݊ݓܿ_ݏݏ݋ ∗ ሺ1 െ  ;ሻ in original Cubicߚ

• Set ௠ܹ௔௫  to ݈݀݊ݓܿ_ݏݏ݋ ∗ ଶିఉଶ െ ݂ሺ∆ሻ ∗ ∆೘ೌೣଶ  instead 

Figure 2.  Congestion window size versus time for the original Cubic. 
Bandwidth of bottleneck link is 800Mbps, RTT is 200ms, and queue size is 
100% BDP, no web traffic. Flow 1 starts at 0(s) and ends at 800(s), flow 2 

start at 100+x(s) (0<x<1) and ends at 800(s). 

 

Figure 3.  The curve of congestion windows of Cubic-FC 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0841



Figure 5.  Congestion window size versus time for the Cubic-FC. 
Bandwidth of bottleneck link is 800Mbps, RTT is 200ms, and queue size is 

100% BDP, no web traffic. 

of ݈݀݊ݓܿ_ݏݏ݋ ∗ ଶିఉଶ  in original Cubic; 

• Prolong the duration of two congestion event by 
decrease t to ݐ ∗ ሺ1 െ ݂ሺ∆ሻሻ, where t is the elapsed 
time from the last loss event and calculated after 
receive an ACK. 

loss_cwnd is the cwnd of congestion event at the end of 
last phase, instead of cwnd of last congestion event in 
original Cubic, as shown in Fig. 3. β is the decrease 
parameter of Cubic as in the original Cubic. ݂ሺ∆ሻ is a convex function which the range of values is 
from 0 to ௠݂௔௫ , where ௠݂௔௫  is the maximum of ݂ሺ∆ሻ and ௠݂௔௫<1. Also ݂ሺ∆ሻ should meet the following requirements:   

• If ∆ൌ 0 or ∆ൌ ∆௠௔௫ , then ݂ሺ∆ሻ ൌ 0 , and when Δ 
gets closer to 0 or ∆௠௔௫, ݂ሺ∆ሻ is closer to 0; 

• If ∆ൌ ∆௜ (∆௜ is a certain value between 0 and ∆௠௔௫), ݂ሺ∆ሻ ൌ ௠݂௔௫, and Δ gets closer to ∆௜, ݂ሺ∆ሻ is closer 
to ௠݂௔௫. 

The reason ݂ሺ∆ሻ needed these restricts is that: 
1) If Δ is closer to 0, it means that the reduction of 

cwnd is more due to normal jitter in the network, we 
don’t need to release bandwidth redundantly; 

2) If Δ is closer to ∆௠௔௫ , it implies that Cubic has 
already released an amount of bandwidth of Δ; if 
Δ=∆௠௔௫, it may be a multiple packet losses event, 
and Cubic has already released an amount of 
bandwidth of ∆max, it’s not necessary to release 
bandwidth repeatedly. 

As shown in Fig. 3, in phase BR1 of bandwidth releasing 
phase, the dotted line is the window increasing curve of 
original Cubic, and Wᇱ୫ୟ୶:୆ୖଵ is the ௠ܹ௔௫ of original Cubic 
in this phase.  

After releasing bandwidth in BR1 of bandwidth releasing 
phase, Cubic needs to maintain the bandwidth and restrain 
the growth of the competition flows. Otherwise, as the 
window growth of Cubic is quite aggressive, the new Cubic 
flow may in turn exceed the old flow, leads to a new 
unfairness. To achieve this, we simply set ௠ܹ௔௫  of BR2 
phase to the cwnd of congestion event at the end of BR1 
phase and set ݂ሺ∆ሻ to 0 that makes Cubic increasing cwnd as 
aggressive as original algorithm. 

IV. EXPERIMENT RESULT 

In this section, we present the detail of our testbed and 
the experiment. For each scenario, we took at least 10 times 
and calculated average value. 

TABLE I.  System configuration of our testbed 

CUP Intel Core i5-2310 2.9GHz 
Memory 4Gbyte 
NIC Intel Pro 1000PT DUAL PORT SERVER 

ADAPTER 
NIC Driver e1000 7.1.7 
Txqueuelen 1000 
Max_backlog 2500 
TX & RX Descriptors 4096 

A. Testbed setup 

The experiment testbed we are using is a network with a 
dumbbell topology, see Fig. 4. There are three machines 
running Linux 2.6.32 with identical hardware and software 
configurations at each edge of the network. Iperf [6] is used 
to generate TCP traffic in the senders and receivers. The rest 
two machines are used to generate background traffic by 
Surge [7] and Iperf. The amount of background traffic is 
about 10% of the bandwidth bottleneck link in both forward 
and backward directions. The router is running the FreeBSD 
Dummynet software. In our experiments, the bandwidth of 
the bottleneck router is set to 800Mbps, and RTT is varied 
from 50ms to 300ms. The bottleneck buffer size is set to 100% 
BDP. We use the drop-tail router at the bottleneck. 

The detail of system configuration is shown in Table I. 
The function ݂ሺ∆ሻ is an important factor for Cubic-FC. 

In our experiments, we simply chose a linear function as 
follow: 

݂ሺ∆ሻ ൌ ۔ە
ۓ ௠݂௔௫ ∗ ∆∆௜ , ݂݅ ∆൑ ∆௜

௠݂௔௫ ∗ ∆௠௔௫ െ ∆∆௜ , ݂݅ ∆൐ ∆௜ 
where ∆௜ൌ ∆೘ೌೣଶ  and ௠݂௔௫ ൌ 0.6 . And also, in 

competition detection phase, the small parameter σ which is 
used to determine whether there are competition flows is set 
to 0.05. 

B. Convergence Time 

First of all, we evaluated the convergence time of Cubic-
FC in the same scene as the experiment in section II. Fig. 5 
shows the congestion window size for two Cubic-FC flows. 

Compare to original Cubic which needs about 400s to 

Figure 4.  Topology of dummynet testbed 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0842



achieve to the convergence state as shown in Fig. 2, Cubic-
FC flows just need less than 200s. 

We also took a series of experiments to confirm the 
improvement of our mechanism. In each experiment, flow 1 
starts at 0(s) and ends at 600(s), flow 2 start at 100+x(s) 
(0<x<1) and ends at 600(s). Fig. 6 shows the convergence 
times with and without background traffic. We can see 
Cubic-FC needs shorter time to achieve convergence than 
original Cubic, and with the RTT gets bigger, Cubic-FC can 
achieve more improvement. In Fig. 6 we can also see that 
even background traffic breaks the global synchronization, 
Cubic-FC can converge faster than original Cubic. 

C. Throughput 

Convergence time can affect the throughput of TCP 
flows, as the shorter convergence time they need, two TCP 
flows can achieve fairer throughput. 

Fig. 7 shows us the difference of the average throughput 
of two flows, i.e. average throughput of Flow 1 - average 
throughput of Flow 2. We can see that, whether with or 
without background traffic, the two flows of Cubic-FC 
always can achieve fairer throughput than original Cubic. 

To test the impact to the total throughput in our fast 
convergence mechanism, we measured the total throughput 
of original Cubic and Cubic-FC in different scenes.  

TABLE II.  Total Throughput Compare 

RTT (ms)
Total Throughput (Mbps) 

Without background traffic With background traffic 
Cubic Cubic-FC Cubic Cubic-FC 

50 772.173 772.058 685.203 680.896 
100 772.259 772.062 685.68 681.452 
150 772.590 772.181 686.053 683.176 
200 772.334 772.135 684.754 681.869 
300 772.814 772.057 683.844 682.086 

Table II shows the compare of total throughput of two 
mechanisms. We can see our mechanism does not make any 
serious impact of the total throughput: in the environment 
without background traffic, the maximum decrement of total 
throughput is only 0.098%, and the average value is only 
0.014%; in the environment with background traffic, these 
two values are 0.63% and 0.46%, respectively. As the 
duration of two congestion event is longer and congestion 
window grows slower in bandwidth release phase of Cubic-
FC, the total throughput of Cubic-FC is little smaller than 
original Cubic, but it is worthy that the slight decline of total 
throughput in exchange the upgrade of  convergence speed. 

V. CONCLUSIONS 

This paper has proposed a new convergence mechanism 
of Cubic TCP, named Cubic with Faster Convergence 
(Cubic-FC for short). We divided the congestion avoidance 
into two phases: competition detection phase and bandwidth 
releasing phase. In competition detection phase, Cubic-FC 
detects the competition flows, and in bandwidth releasing 
phase, we use a new bandwidth releasing method to release a 
certain amount of bandwidth according to the decrement of 
cwnd in competition detection phase. 

We used testbed rather than simulation, which is closer to 
realistic network environment. Testbed experiments show 
that Cubic-FC can converge faster than original Cubic in the 
environment with and without background traffic, at the 
same time, it do not seriously impact to the other 
performance of Cubic. 

REFERENCES 
[1] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed 

TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 
5, pp. 64–74, 2008. 

[2] S.Floyd, "RFC 3649: HighSpeed TCP for Large Congestion 
Windows", RFC 3649, Experimental, December 2003. 

[3] D. Leith, R. Shorten, and G. McCullagh. Experimental evaluation of 
cubic-TCP. In Proc. Protocols for Fast Long Distance Networks 2007, 
2007. 

[4] D. Papadimitriou, M. Welzl, M. Scharf and B. Briscoe, “RFC 6077: 
Open Research Issues in Internet Congestion Control”, RFC 6077, 
INFORMATIONAL, February 2011. 

[5] Yee-Ting Li , Douglas Leith and Robert N. Shorten, “Experimental 
evaluation of TCP protocols for high-speed networks”, IEEE/ACM 
Transactions on Networking (TON), v.15 n.5, p.1109-1122, October 
2007. 

[6] Iperf. http://sourceforge.net/projects/iperf . 

[7] Barford, P., and Crovella, M. Generating representative web 
workloads for network and server performance evaluation. In 
Measurement and Modeling of Computer Systems (1998), pp. 151–
160. 

 

Figure 6.  Convergence time compare between original Cubic and Cubic-
FC. Bandwidth is 800Mbps, the running time is 600s, and RTT is varied 

from 50ms to 300ms. 100%BDP 

Figure 7.  Average throughput of two flows compare between original 
Cubic and Cubic-FC. Bandwidth is 800Mbps, the running time is 600s, and 

RTT is varied from 50ms to 300ms. 100%BDP 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0843




