
Incremental Semantic LTL Bounded Model Checking

Rui Wang Wanwei Liu Xiaoguang Mao Tun Li
School of Computer Science

National University of Defense Technology
Changsha, Hunan

rui.wang@nudt.edu.cn

Abstract—Bounded model checking has proven to be an
efficient method for finding bugs in system designs. In this
paper, we present an incremental semantic translation for
Bounded model checking and give an incremental algorithm.
We implement this method in NuSMV model checker and
report encouraging results.

Keywords-bounded model checking; semantic encoding;
incremental; NuSMV

I. INTRODUCTION

Bounded Model Checking (BMC) [1] is an efficient
method for finding bugs in system designs. The basic idea of
BMC is to convert the model checking problem to a Boolean
satisfiability problem, i.e., given a Kripke structure M
representing the system, an LTL formula ' and a bound k, a
propositional formula M ;: ' k is created and it is
satisfiable if and only if M involves a counterexample of ' ,
and the length of such counterexample is bounded by k.

BMC has established itself as a complementary method
to BDD [2] based approach. There are some advantages for
BMC:
 First, it leverages the impressive achievements in SAT

solver technology and several industry applications have
proven that BMC seems to be able to solve certain
problems that are not feasible for BDDs [4].

 Counterexample produced by most BMC encodings is
minimal and that counterexample is immediately
available [3]. In comparison, producing short
counterexample with BDD-based method is much more
expensive than with BMC.

 Lastly, Boolean formulas are a more compact
representation than using BDDs for many Boolean
functions. Bryant pointed that there are some Boolean
functions whose corresponding BDDs are exponential
large in the number of propositional variables that still
have polynomial circuits [2].
Although BMC has been successfully applied in practice,

verifications cannot always be accomplished within desired
resources. One of the key factors that affect the efficiency of
BMC is the size of the inputting of the SAT solver. If the
encoding produces large formulas that the solver can be
overwhelmed, then BMC will not be able to proceed deep
enough to find all the bugs in the given model. As a result, it
is still a meaningful work to improve the scalability of BMC.

There are two major ways to improve the efficiency of
BMC. One is to develop better encodings, and the other is to

equip with a more powerful SAT solver. In detail, the first
approach is to develop a better approach to encoding
M ;: ' k , the more compact the encoding is, the faster for

solving it by SAT solvers.
The second way is to utilize new SAT solver technology

0. Incremental SAT solving is a promising technique to
improve the performance of BMC. When a solver is faced
with a sequence of related problems, learning clauses from
the previous problem can drastically improve the solution
time for the next problem and thus for the whole sequence 0.
In BMC, when the SAT solver does not find bug with the
present bound k , then it would repeat this process by
augmenting k , unless k reaches some specific value (called
completeness threshold). The fact that the encodings for
M ;: ' k and M ;: ' k are very similar makes BMC a

natural candidate for incremental solving.
In this paper, we present a BMC encoding technique,

which is the incremental version of semantic encoding
proposed in [5]. We adopt the new encoding to utilize the
incremental SAT solver as a back-end. And, we give an
implementation based the NuSMV [7]. Experimental results
show that the incremental semantic encoding makes a
satisfactory improvement in BMC efficiency.

Some work has also considered improving the efficiency
of BMC encoding [9, 10]. Cimatti et al. [9] analyze the
original encoding [1] and suggest several optimizations.
Frisch et al. [10] propose a fixpoint based encoding which
uses a normal form of LTL and it takes advantage of the
properties of such normal form. Both 0 and [11] propose
encodings with linear complexity, and we will do a
comparison with them in section IV.

This paper is structured as follows: Section II gives the
basic definitions and terminology used throughout the paper.
Section III will give the optimized semantic encoding for
BMC. Experimental results will be given in Section IV.
Finally, Section V will conclude the whole paper.

II. PRELIMINARIES

Let A P be a finite set of atomic propositions. A Kripke
structure M is a tuple hS;I;T ;L i where S is a finite set of
states; I µ S is the set of the initial states; T µ S £ S is a
total transition relation; and a mapping L :S ! 2A P is the
labeling function. Labeling is a way to attach observations to
the system: For a state s 2 S , the set L (s) contains exactly
those atomic propositions that hold in s.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0941

We use p(s) to denote p 2 L (s). The initial state I and
the transition relation T are given as functions in terms of
A P . This kind of representation, frequently called functional
form, can be exponentially more succinct in comparison to
an explicit representation of the states. An infinite path
derived from M is a sequence (¼ = s0s1 :::) 2 S ! for
which s0 2 I and (si;si+ 1) 2 T (i¸ 0) for each i. We say
that ¼ is a (k;l)-loop if ¼ = (s0s1 :::sl¡ 1)(sl:::sk)

! such
that 0 ·l·k . We use the notation ¼(i) to denote the i-th
state si. We denote by L (M) the set of all the infinite paths
derived from M .

LTL is an extension of propositional logic. It can be
defined inductively over a set of atomic propositions A P as
follows:

• Both > and ? are LTL formulae.
• Each proposition p 2 A P is an LTL formula.
• If both f and g are LTL formulae, then both : f and

f ^ g are LTL formulae.
• If f is an LTL formula, then X f is an LTL formula.
• If both f and g are LTL formulae, then fU g is also

an LTL formula.
Semantics of an LTL formula is given w.r.t an infinite

path ¼ of M and a position i2 N :
• ¼;ij= p iff p 2 L (¼(i))
• ¼;ij= : f iff ¼;i6j= f
• ¼;ij= f ^ g iff ¼;ij= f and ¼;ij= g
• ¼;ij= X f iff ¼;i+ 1 j= f
• ¼;ij= fU g iff there is some j ¸ i, s.t. ¼;j j= g and

¼;tj= f for each i·t< j
As usual, we write ¼ j= Ã in place of ¼;0 j= Ã .
We will also use the derived Boolean operators such as

_ ;! and $, defined as usual. Some derived temporal
operators defined as follows are also used:

F f , > U f
G f , : F : f
fR g , : (: fU : g)

Given a Kripke structure M and an LTL formula ' , we
denote M j= ' if ¼ j= ' for each ¼ 2 L (M).

Theorem 1: If M 6j= ' , then there exists a (k;l)-loop
¼ 2 L (M) violating ' for some k and l, where l·k.

III. INCREMENTAL SEMANTIC ENCODING FOR BMC

In this section, we introduce the incremental semantic
encoding for LTL BMC. But before that, we will revisit the
original syntactic and semantic encoding, and then give the
improved approach.

A. The basic syntactic/semantic encoding

Given a model M and an LTL formula ' , the syntactic
encoding [1] approach for BMC generates the Boolean
formula M ;: ' k for M and ' with bound k separately.
The whole encoding can be expressed as follows:

M ;: ' k = I(s0)^
k¡ 1^

i= 0

T (si;si+ 1)^ : ' k

where the left two conjuncts are usually denoted as M k
which represents all the paths with bound k in M , and : ' k
represents the paths of length k that violates ' . There are
several known methods for generating : ' k [1, 5, 9, 10, 11].

Recall the method proposed in [8], LTL model checking
problem could be done as follows: Given an LTL formula ' ,
we can construct its tableau T: ' , which accepts exactly all
paths that violate ' . Then, the model checking problem of
LTL is boiled down to check whether L (M £ T: ') is empty.
To this end, one need to show that there is no infinite fair
path in M £ T: ' . Hence, the so-called semantic encoding
for LTL BMC is given in [5].

The fair path detection problem can be straightforward
adapted to a SAT-based BMC procedure. Given a model M
and an LTL formula ' , we can do this by verifying the
property G > under the fairness constraint

V
F i2 F M

F i in the
product model M £ T: ' instead of the standard BMC
translation. Thus, the semantic encoding can be formulated
as follows:

IM (s0)̂

k¡ 1^

i= 0

TM (si;si+ 1)̂

k¡ 1_

l= 0

((sl = sk)̂
^

F i2 F M

k_

j= l

F i(sj))

In comparison to syntactic encoding, the semantic encoding
has a big advantage in terms of the size of resulting formula
[5].

B. Optimization of the semantic encoding

In order to apply the incremental SAT technique in the
semantic encoding, we need to do some optimization on the
basic encoding. We separate the whole encoding into three
parts, the first part is the model’s k-step unrolling, the second
part is to handle the loop constraints and the third part is the
fairness constraints.

The model’s k-step unrolling can be encoded as follows:

M k = IM (s0)^
k¡ 1^

i= 0

TM (si;si+ 1)

which captures all the paths of length k in the product model.
For loop constraints, we introduce k + 1 fresh loop selector
variables 0̀;:::; k̀ which constraints the path in the model
to be a (k;i)-loop if the variable ì is true and all other j̀
variables is false. Then, the loop constraints can be captured
as follows:

loopconstraints k =

0

B
B
@

(̀ 0 $?)
^

V

1·i·k

((̀ i ! (si¡ 1 = sk))

^ (
V

0·j·i¡ 1
j̀ ! : ì))

1

C
C
A

From the formula above, we can see that
loopconstraints k is true if and only if there is a (k;l)-loop.

However, the loopconstraints k above is k-dependent. In
order to make use of the k step information to compute the
k + 1 step, we would introduce a new proxy state sp to
denote the endpoint of the path. Then, the
loopconstraints k will be separated into two parts: k -
dependent and k-invaraint. We use loopconstraints kd
to denote the k-dependent part and loopconstraints ki to

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0942

denote the k-invaraint part. The new loop constraints
encoding should be:

loopconstraints ki =

0

B
B
@

(̀ 0 $?)
^

V

1·i·k

((̀ i ! (si¡ 1 = sp))

^ (
V

0·j·i¡ 1
j̀ ! : ì))

1

C
C
A

loopconstraints kd = (sp = sk)
loopconstraints k = loopconstraints ki

^ loopconstraints kd
Thus, many k dependent information for loop constraints

is eliminated by this new encoding. The fairness constraints
will be formulated as usual. Then, the whole encoding about
the optimized semantic encoding will be:

M ;: ' k =

0

B
B
@

M k ^ loopconstraints ki

^ loopconstraints kd ^
W

0·l·k

(̀ i ^
V

F i2 F

W

l·j·k

F (sj))

1

C
C
A

The encoding above only introduces k + 2 variables without
changing the complexity of the semantic encoding. However,
this encoding will be more suitable to be solved with the
incremental SAT solver and we will give the algorithm in the
next section.

C. The incremental algorithm

From section B, we achieve the optimized semantic
encoding. In this section, we will give the incremental
algorithm for the optimized semantic encoding. The
complete algorithm is depicted in Figure 1.

In the algorithm, we use the tableau construction method
proposed in [8] to generate the LTL tableau. zChaff [12] is
used as the incremental SAT solver. The solver has two
instance groups: the permanent group and the additional
group. The permanent group is to record the ksteps’ invariant
information which is used to compute the next step. The
additional group is to store the k-dependent information.

The function ConstructKInvaraint returns the k step
invariant which is the conjunction of the k step unrolling of
the product model and the k step loop condition invariant.
ConstructKDependent returns the k step dependent
information which is the disjunction of all the loop condition
with finesses and it will be deleted at the end of the current
step computation.

IV. EXPERIMENTAL RESULTS

To justify our idea, we implement the algorithm in
NuSMV2.5.4 [7]. We mostly use examples of nontrivial
complexity. All the benchmarks come from [3]. Our
implementation is compared against four bounded LTL
model checking algorithms. Firstly we compare against the
standard NuSMV encoding, which includes many of the
optimizations of [9]. Secondly, we compare our encoding to
[11], denoted as “VMCAI2005” in the table. Then, we also
compare against the encoding of 0, denoted as“CAV2005” in
the table. To the best of our knowledge, these two encodings
are the most efficient method for bounded model checking.
At last, we compare against the basic semantic encoding

without using the optimization and the incremental SAT
technology which is denoted as “BMC_TAB” in the table.

We ran the benchmarks on Linux OS and the memory for
each run was set to 1.5GB and the time limit to 1 hour. For
all BMC algorithms, we used zChaff as the SAT solver.
Table 1 shows the experimental results. The “a” columns tell
whether the property was found to be true (t) or false (f). The
running times are given in seconds except that “TO” (“MO”)
means that the formula was not solved because of timeout
(running out of memory). The “k” columns give the bound
that was reached. From the results, we can see that our
algorithm performs better than others in most cases.

Figure 1. Algorithm: Bounded model checking ltl based on incremental
semantic encoding

V. CONCLUSION

In this paper, we present an optimized semantic encoding
for bounded model checking LTL. The new encoding uses
an incremental SAT solver as the backend and we give an
incremental algorithm. Experimental results show that our
algorithm is more efficient.

Input: Model: M , an ltl formula: ' , bound: k .
Output: true if there is a counterexample, false
otherwise.
Procedure BMC(M , ' , k)
begin

1. solver := CreateIncrementalSovler();
2. T: ' := ConstructLTLTableau(');
3. M := M £ T: ' ;
4. AddToPermanentGroup(solver, IM);
5. for increasingK := 0 to k
6. if(pre increasingK < increasingK)
7. k invaraint:= ConstructKInvaraint(M ,

pre increasingK , increasingK);
8. AddToPermanentGroup(solver,

k invaraint);
9. pre increasingK := increasingK ;
10. endif
11. k dependent := ConstructKDependent(M ,

increasingK);
12. AddToAdditionalGroup(solver, k dependent);
13. if(Solve(solver) is satisfiable)
14. return true;
15. else
16. coninute;
17. endif
18. DestroyAdditionalGroup(solver);
19. endfor
20. return false;
21. end

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0943

TABLE I. EXPESRIMENTAL RESULTS

model

Prop.

NuSMV VMCAI2005 CAV2005 BMC_TAB BMC_INC
a k t a k t a k t a k t a k t

abp4

0 f 16 62 f 16 46 f 16 27 f 16 24 f 16 2
: 0 47 TO 52 TO 354 TO 378 TO 496 TO
1 30 TO 29 TO 45 TO 38 TO 51 TO
2 f 17 70 f 17 36 f 17 39 f 17 5 f 17 1
3 29 TO 30 TO 37 TO 33 TO 45 TO

brp

0 31 TO 241 TO 3040 TO 786 TO 2798 TO
: 0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0
: 0, nv 22 TO 21 TO 24 600 f 25 65 f 25 19
1 25 TO 38 TO 196 TO 76 TO 205 TO
: 1 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0

counter

0 202 TO 1263 MO 11849 TO 1567 TO 12116 TO
: 0 f 8 0 f 8 0 f 8 0 f 8 0 f 8 0

pci

0 17 TO f 18 3092 f 18 1339 f 18 435 f 18 102
: 0 f 0 0 f 0 0 f 0 0 f 0 0 f 0 0
F 0 14 TO f 18 1121 f 18 514 f 18 60 f 18 3
1 16 TO 18 TO 20 TO 21 TO 28 TO
: 1 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0

dme3

0 27 MO 49 TO 48 TO f 63 1021 f 63 307
: 0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0
: 0, nv 27 MO f 59 2330 f 59 641 f 59 403 f 59 170
1 42 TO 53 TO 58 TO 67 TO 103 TO
: 1 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0

srg5

0 13 TO 312 TO 805 MO 732 TO 863 TO
: 0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0
: 0, nv f 6 8 f 6 0 f 6 0 f 6 0 f 6 0

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grant No.90818024, 91118007
and 61133001, the National High Technology Research and
Development Program of China (863 program) under Grant
No.2011AA010106 and Program for New Century Excellent
Talents in University.

This work is partially supported by NSFC project under
Grant No. 61103012, No. 61133007 and No. 61272335.

REFERENCES
[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model

checking without bdds”, Proc. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
volume 1579 of Lecture Notes in Computer Science, Springer-Verlag,
1999, pp 193-207.

[2] R. E. Bryant, “Graph-based algorithms for boolean function
manipulation”, IEEE Transactions on Computers, C-35(8), 1986, pp.
677-691.

[3] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan,
“Linear encodings of bounded ltl model checking”, Logical Methods
in Computer Science, 2006.

[4] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan, “An
analysis of satbased model checking techniques in an industrial
environment”, Correct Hardware Design and Verification Methods,
2005, pp. 254-268.

[5] K. Heljanko, T. Junttila, and T. Latvala, “Incremental and complete
bounded model checking for full pltl”, Proc. Computer Aided
Verification, Springer, 2005, pp. 517-527.

[6] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman,
“Completeness and complexity of bounded model checking”, Proc.
VMCAI’04, volume 2937 of Lecutre Notes in Computer Science, pp.
85-96, Springer-Verlag, 2004.

[7] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M.
Pistore, M. Roveri, and A. Tchaltsev, “Nusmv 2.5 user manual”,
http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf, Apr. 2010.

[8] E.M. Clarke, O. Grumberg, and K. Hamaguchi, “Another look at LTL
model checking”, Proc. CAV’94, volume 818 of Lecture Notes in
Computer Science, pp. 415-427, Springer-Verlag, 1994.

[9] Cimatti, A., Pistore, M., Roveri, M., Sebastiani, R, “Improving the
encoding of LTL model checking into SAT”, Proc. Verification,
Model Checking, and Abstract Interpretation (VMCAI’2002).
Volume 2294 of LNCS., Springer (2002), pp. 196-207.

[10] A. Frisch, D. Sheridan, T. Walsh, “A fixpoint encoding for bounded
model checking”, Proc. FormalMethods in Computer-Aided Design
(FMCAD’2002), Volume 2517 of LNCS., Springer (2002), pp. 238-
255.

[11] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Simple is better:
Efficient bounded model checking for past LTL”, Proc. VMCAI’05,
volume 3385 of LNCS, pp. 380-395, Springer, jan. 2005.

[12] M.W. Moskewicz, C.F. Madigan, Y. Zhao, and S. Malik, “Chaff:
Engineering an efficent sat solver”, Proc. Design Automation
Conference (DAC2001), volume 208, pp. 530-535. Springer-Verlag,
2001.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0944

