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Abstract—Bounded model checking has proven to be an 
efficient method for finding bugs in system designs. In this 
paper, we present an incremental semantic translation for 
Bounded model checking and give an incremental algorithm. 
We implement this method in NuSMV model checker and 
report encouraging results. 

Keywords-bounded model checking; semantic encoding; 
incremental; NuSMV 

I.  INTRODUCTION 

Bounded Model Checking (BMC) [1] is an efficient 
method for finding bugs in system designs. The basic idea of 
BMC is to convert the model checking problem to a Boolean 
satisfiability problem, i.e., given a Kripke structure M  
representing the system, an LTL formula '  and a bound k, a 
propositional formula M ;: ' k  is created and it is 
satisfiable if and only if M  involves a counterexample of ' , 
and the length of such counterexample is bounded by k. 

BMC has established itself as a complementary method 
to BDD [2] based approach. There are some advantages for 
BMC:  
 First, it leverages the impressive achievements in SAT 

solver technology and several industry applications have 
proven that BMC seems to be able to solve certain 
problems that are not feasible for BDDs [4].  

 Counterexample produced by most BMC encodings is 
minimal and that counterexample is immediately 
available [3]. In comparison, producing short 
counterexample with BDD-based method is much more 
expensive than with BMC.  

 Lastly, Boolean formulas are a more compact 
representation than using BDDs for many Boolean 
functions. Bryant pointed that there are some Boolean 
functions whose corresponding BDDs are exponential 
large in the number of propositional variables that still 
have polynomial circuits [2]. 
Although BMC has been successfully applied in practice, 

verifications cannot always be accomplished within desired 
resources. One of the key factors that affect the efficiency of 
BMC is the size of the inputting of the SAT solver. If the 
encoding produces large formulas that the solver can be 
overwhelmed, then BMC will not be able to proceed deep 
enough to find all the bugs in the given model. As a result, it 
is still a meaningful work to improve the scalability of BMC. 

There are two major ways to improve the efficiency of 
BMC. One is to develop better encodings, and the other is to 

equip with a more powerful SAT solver. In detail, the first 
approach is to develop a better approach to encoding 
M ;: ' k ,  the more compact the encoding is,  the faster for 

solving it by SAT solvers. 
The second way is to utilize new SAT solver technology 

0. Incremental SAT solving is a promising technique to 
improve the performance of BMC. When a solver is faced 
with a sequence of related problems, learning clauses from 
the previous problem can drastically improve the solution 
time for the next problem and thus for the whole sequence 0. 
In BMC, when the SAT solver does not find bug with the 
present bound k , then it would repeat this process by 
augmenting k , unless k  reaches some specific value (called 
completeness threshold). The fact that the encodings for 
M ;: ' k  and M ;: ' k  are very similar makes BMC a 

natural candidate for incremental solving. 
In this paper, we present a BMC encoding technique, 

which is the incremental version of semantic encoding 
proposed in [5]. We adopt the new encoding to utilize the 
incremental SAT solver as a back-end. And, we give an 
implementation based the NuSMV [7]. Experimental results 
show that the incremental semantic encoding makes a 
satisfactory improvement in BMC efficiency. 

Some work has also considered improving the efficiency 
of BMC encoding [9, 10]. Cimatti et al. [9] analyze the 
original encoding [1] and suggest several optimizations. 
Frisch et al. [10] propose a fixpoint based encoding which 
uses a normal form of LTL and it takes advantage of the 
properties of such normal form. Both 0 and [11] propose 
encodings with linear complexity, and we will do a 
comparison with them in section IV. 

This paper is structured as follows: Section II gives the 
basic definitions and terminology used throughout the paper. 
Section III will give the optimized semantic encoding for 
BMC. Experimental results will be given in Section IV. 
Finally, Section V will conclude the whole paper. 

II. PRELIMINARIES 

Let A P  be a finite set of atomic propositions. A Kripke 
structure M  is a tuple hS;I;T ;L i where S  is a finite set of 
states; I µ S  is the set of the initial states; T µ S £ S  is a 
total transition relation; and a mapping L :S ! 2A P  is the 
labeling function. Labeling is a way to attach observations to 
the system: For a state s 2 S , the set L (s) contains exactly 
those atomic propositions that hold in s. 
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We use p(s) to denote p 2 L (s). The initial state I  and 
the transition relation T  are given as functions in terms of  
A P . This kind of representation, frequently called functional 
form, can be exponentially more succinct in comparison to 
an explicit representation of the states. An infinite path 
derived from M  is a sequence (¼ = s0s1 :::) 2 S !  for 
which s0 2 I and (si;si+ 1) 2 T (i¸ 0) for each i. We say 
that ¼  is a (k;l)-loop if ¼ = (s0s1 :::sl¡ 1)(sl:::sk )

!  such 
that 0 ·l·k . We use the notation ¼(i) to denote the i-th 
state si. We denote by L (M ) the set of all the infinite paths 
derived from M . 

LTL is an extension of propositional logic. It can be 
defined inductively over a set of atomic propositions A P  as 
follows: 

• Both > and ?  are LTL formulae. 
• Each proposition p 2 A P  is an LTL formula. 
• If both f  and g are LTL formulae, then both : f  and 

f ^ g are LTL formulae. 
• If f  is an LTL formula, then X f  is an LTL formula. 
• If both f  and g are LTL formulae, then fU g is also 

an LTL formula. 
Semantics of an LTL formula is given w.r.t an infinite 

path ¼  of M  and a position i2 N : 
• ¼;ij= p iff p 2 L (¼(i)) 
• ¼;ij= : f  iff  ¼;i6j= f  
• ¼;ij= f ^ g iff ¼;ij= f  and ¼;ij= g 
• ¼;ij= X f  iff ¼;i+ 1 j= f  
• ¼;ij= fU g iff there is some j ¸ i, s.t. ¼;j j= g and 

¼;tj= f  for each i·t< j 
As usual, we write ¼ j= Ã  in place of ¼;0 j= Ã . 
We will also use the derived Boolean operators such as 

_ ;!  and $ , defined as usual. Some derived temporal 
operators defined as follows are also used: 

F f , > U f
G f , : F : f
fR g , : (: fU : g) 

Given a Kripke structure M  and an LTL formula ' , we 
denote M j= '  if ¼ j= '  for each ¼ 2 L (M ). 

Theorem 1: If M 6j= ' , then there exists a (k;l)-loop 
¼ 2 L (M ) violating '  for some k and l, where l·k. 

III. INCREMENTAL SEMANTIC ENCODING FOR BMC 

In this section, we introduce the incremental semantic 
encoding for LTL BMC. But before that, we will revisit the 
original syntactic and semantic encoding, and then give the 
improved approach. 

A. The basic syntactic/semantic encoding 

Given a model M  and an LTL formula ' , the syntactic 
encoding [1] approach for BMC generates the Boolean 
formula M ;: ' k  for M  and '  with bound k  separately.  
The whole encoding can be expressed as follows: 

M ;: ' k = I(s0)^
k¡ 1^

i= 0

T (si;si+ 1)^ : ' k  

where the left two conjuncts are usually denoted as M k  
which represents all the paths with bound k in M , and : ' k  
represents the paths of length k  that violates ' . There are 
several known methods for generating : ' k  [1, 5, 9, 10, 11].  

Recall the method proposed in [8], LTL model checking 
problem could be done as follows: Given an LTL formula ' , 
we can construct its tableau T: ' ,  which accepts exactly all 
paths that violate ' . Then, the model checking problem of 
LTL is boiled down to check whether L (M £ T: ' ) is empty. 
To this end, one need to show that there is no infinite fair 
path in M £ T: ' . Hence, the so-called semantic encoding 
for LTL BMC is given in [5]. 

The fair path detection problem can be straightforward 
adapted to a SAT-based BMC procedure. Given a model M  
and an LTL formula ' , we can do this by verifying the 
property G >  under the fairness constraint 

V
F i2 F M

F i in the 
product model M £ T: '  instead of the standard BMC 
translation. Thus, the semantic encoding can be formulated 
as follows: 

IM (s0 )̂

k¡ 1^

i= 0

TM (si;si+ 1 )̂

k¡ 1_

l= 0

((sl = sk )̂
^

F i2 F M

k_

j= l

F i(sj))

In comparison to syntactic encoding, the semantic encoding 
has a big advantage in terms of the size of resulting formula 
[5]. 

B. Optimization of the semantic encoding 

In order to apply the incremental SAT technique in the 
semantic encoding, we need to do some optimization on the 
basic encoding. We separate the whole encoding into three 
parts, the first part is the model’s k-step unrolling, the second 
part is to handle the loop constraints and the third part is the 
fairness constraints. 

The model’s k-step unrolling can be encoded as follows: 

M k = IM (s0)^
k¡ 1^

i= 0

TM (si;si+ 1) 

which captures all the paths of length k in the product model. 
For loop constraints, we introduce k + 1 fresh loop selector 
variables 0̀;:::; k̀  which constraints the path in the model 
to be a (k;i)-loop if the variable ì is true and all other j̀  
variables is false. Then, the loop constraints can be captured 
as follows: 

loopconstraints k =

0

B
B
@

(̀ 0 $ ? )
^

V

1·i·k

((̀ i ! (si¡ 1 = sk ))

^ (
V

0·j·i¡ 1
j̀ ! : ì))

1

C
C
A  

From the formula above, we can see that 
loopconstraints k  is true if and only if there is a (k;l)-loop. 

However, the loopconstraints k  above is k-dependent. In 
order to make use of the k step information to compute the 
k + 1  step, we would introduce a new proxy state sp  to 
denote the endpoint of the path. Then, the 
loopconstraints k  will be separated into two parts: k -
dependent and k-invaraint. We use loopconstraints kd  
to denote the k-dependent part and loopconstraints ki to 
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denote the k-invaraint  part. The new loop constraints 
encoding should be: 

loopconstraints ki =

0

B
B
@

(̀ 0 $ ? )
^

V

1·i·k

((̀ i ! (si¡ 1 = sp))

^ (
V

0·j·i¡ 1
j̀ ! : ì))

1

C
C
A  

loopconstraints kd = (sp = sk ) 
loopconstraints k = loopconstraints ki

^ loopconstraints kd  
Thus, many k dependent information for loop constraints 

is eliminated by this new encoding. The fairness constraints 
will be formulated as usual. Then, the whole encoding about 
the optimized semantic encoding will be: 

M ;: ' k =

0

B
B
@

M k ^ loopconstraints ki

^ loopconstraints kd ^
W

0·l·k

(̀ i ^
V

F i2 F

W

l·j·k

F (sj))

1

C
C
A  

The encoding above only introduces k + 2 variables without 
changing the complexity of the semantic encoding. However, 
this encoding will be more suitable to be solved with the 
incremental SAT solver and we will give the algorithm in the 
next section. 

C. The incremental algorithm 

From section B, we achieve the optimized semantic 
encoding. In this section, we will give the incremental 
algorithm for the optimized semantic encoding. The 
complete algorithm is depicted in Figure 1.  

In the algorithm, we use the tableau construction method 
proposed in [8] to generate the LTL tableau.  zChaff [12] is 
used as the incremental SAT solver. The solver has two 
instance groups: the permanent group and the additional 
group. The permanent group is to record the ksteps’ invariant 
information which is used to compute the next step. The 
additional group is to store the k-dependent information.  

The function ConstructKInvaraint returns the k  step 
invariant which is the conjunction of the k step unrolling of 
the product model and the k  step loop condition invariant. 
ConstructKDependent returns the k  step dependent 
information which is the disjunction of all the loop condition 
with finesses and it will be deleted at the end of the current 
step computation. 

IV. EXPERIMENTAL RESULTS 

To justify our idea, we implement the algorithm in 
NuSMV2.5.4 [7]. We mostly use examples of nontrivial 
complexity. All the benchmarks come from [3]. Our 
implementation is compared against four bounded LTL 
model checking algorithms. Firstly we compare against the 
standard NuSMV encoding, which includes many of the 
optimizations of [9]. Secondly, we compare our encoding to 
[11], denoted as “VMCAI2005” in the table. Then, we also 
compare against the encoding of 0, denoted as“CAV2005” in 
the table. To the best of our knowledge, these two encodings 
are the most efficient method for bounded model checking. 
At last, we compare against the basic semantic encoding 

without using the optimization and the incremental SAT 
technology which is denoted as “BMC_TAB” in the table. 

We ran the benchmarks on Linux OS and the memory for 
each run was set to 1.5GB and the time limit to 1 hour. For 
all BMC algorithms, we used zChaff as the SAT solver. 
Table 1 shows the experimental results. The “a” columns tell 
whether the property was found to be true (t) or false (f). The 
running times are given in seconds except that “TO” (“MO”) 
means that the formula was not solved because of timeout 
(running out of memory). The “k” columns give the bound 
that was reached. From the results, we can see that our 
algorithm performs better than others in most cases. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 1.  Algorithm: Bounded model checking ltl based on incremental 
semantic encoding 

V. CONCLUSION 

In this paper, we present an optimized semantic encoding 
for bounded model checking LTL. The new encoding uses  
an incremental SAT solver as the backend and we give an 
incremental algorithm. Experimental results show that our 
algorithm is more efficient. 

 
 

Input: Model: M , an ltl formula: ' , bound: k .
Output: true  if there is a counterexample, false 
otherwise. 
Procedure BMC(M , ' , k) 
begin 

1. solver := CreateIncrementalSovler(); 
2. T: '  := ConstructLTLTableau(' ); 
3. M  := M £ T: ' ; 
4. AddToPermanentGroup(solver, IM ); 
5. for increasingK := 0 to k 
6.         if(pre increasingK < increasingK ) 
7.               k invaraint:=  ConstructKInvaraint(M , 

pre increasingK , increasingK ); 
8.                 AddToPermanentGroup(solver, 

k invaraint); 
9.                   pre increasingK  := increasingK ; 
10.        endif 
11.        k dependent := ConstructKDependent(M ,  

increasingK ); 
12.        AddToAdditionalGroup(solver, k dependent); 
13.        if(Solve(solver) is satisfiable) 
14.               return true; 
15.        else  
16.               coninute; 
17.        endif 
18.        DestroyAdditionalGroup(solver); 
19.    endfor 
20.    return false; 
21.    end
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TABLE I.  EXPESRIMENTAL RESULTS 

 
model 

 
Prop. 

NuSMV VMCAI2005 CAV2005 BMC_TAB BMC_INC 
a k t a k t a k t a k t a k t 

 
 
abp4 
 
 

0 f 16 62 f 16 46 f 16 27 f 16 24 f 16 2 
: 0  47 TO  52 TO  354 TO  378 TO  496 TO 
1  30 TO  29 TO  45 TO  38 TO  51 TO 
2 f 17 70 f 17 36 f 17 39 f 17 5 f 17 1 
3  29 TO  30 TO  37 TO  33 TO  45 TO 

 
 
brp 

0  31 TO  241 TO  3040 TO  786 TO  2798 TO 
: 0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0 
: 0, nv  22 TO  21 TO  24 600 f 25 65 f 25 19 
1  25 TO  38 TO  196 TO  76 TO  205 TO 
: 1 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0 

 
counter 

0  202 TO  1263 MO  11849 TO  1567 TO  12116 TO 
: 0 f 8 0 f 8 0 f 8 0 f 8 0 f 8 0 

 
 
pci 

0  17 TO f 18 3092 f 18 1339 f 18 435 f 18 102 
: 0 f 0 0 f 0 0 f 0 0 f 0 0 f 0 0 
F 0  14 TO f 18 1121 f 18 514 f 18 60 f 18 3 
1  16 TO  18 TO  20 TO  21 TO  28 TO 
: 1 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0 

 
 
dme3 

0  27 MO  49 TO  48 TO f 63 1021 f 63 307 
: 0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0 
: 0, nv  27 MO f 59 2330 f 59 641 f 59 403 f 59 170 
1  42 TO  53 TO  58 TO  67 TO  103 TO 
: 1 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0 

 
srg5 

0  13 TO  312 TO  805 MO  732 TO  863 TO 
: 0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0 
: 0, nv f 6 8 f 6 0 f 6 0 f 6 0 f 6 0 
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