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Abstract—Computer numerical control (CNC) and robotic 
welding have long been applied to industrial manufacturing in 
production lines. This paper introduces optimal control to 
layout the maneuvering sequence for a five-linked manipulator 
arm. Two- point boundary-value problem (TPBVP) is 
inevitable in most of the dynamic optimal control problem. 
Direct collocation with Nonlinear Programming (DCNLP) 
converts a TPBVP into a nonlinear programming problem. 
DCNLP has been extensively applied in solving the space and 
aircraft control problems but is not much adopted in solving 
robotic optimization problems. The paper requires a 
manipulator to weld up two cylinders which are intersecting 
and perpendicular to each other. A least energy maneuvering 
sequence is expected.  

Keywords-direct collocation; robotic manipulator; optimal 
control 

I.  INTRODUCTION 

One of the major uses of robotic manipulators is CNC. 
However many manipulators installed in the production lines 
only perform repetitive work once they are programmed. 
DCNLP is extensively applied in aerospace applications and 
orbital mechanics [1]. It has not yet become popular in the 
field of robotics using optimal control [1]. This study would 
like to take a deeper look into optimal control and see how a 
manipulator can go beyond with the aid of optimization 
technology.  

When two cylinders intersect each other with a right 
angle, the equations of intersection of the two bodies become 
transcendental. This study combines robotic control and 
optimal control and requests the five-linked manipulator to 
weld up the intersection of two cylinders. The manipulator is 
modeled according to the Denavit-Hartenberg (D-H) 
convention [2]. The Lagrange-Euler equation formulates the 
dynamics and serves as the equations of motion (EOM). The 
necessary conditions (N.C.s) of optimal control describe the 
state variables, Lagrange multipliers, control elements and 
final time when the optimality occurs. However N.C.s 
inevitably end up with a TPBVP which complicates the 
procedures for finding numerical solution [3].  

DCNLP converts a TPBVP into a nonlinear 
programming problem [4]. It divides the trajectory into 
segments and approximates the solution of EOM by cubic 
polynomials within each segment. This study seeks the least-
energy maneuvering sequence for the five joint actuators 

when the manipulator welds up the two bodies. Although 
DCNLP requires larger memory space and faster CPU, it 
guarantees robust convergence when it locates the numerical 
solution.  

II. DYNAMICS AND EQUATIONS OF MOTION 

This work follows the D-H convention to formulate the 
geometry of the five-linked manipulator arm. The 
manipulator at its parking position is shown in Fig. 1.  

 

Figure 1.  Configuration of the five-linked manipulator at its parking 
position. 

The geometry of the manipulator is described by the five 
homogeneous transformation matrices.  
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where ( )t1θ , ( )t2θ , ( )t3θ , ( )t4θ and ( )t5θ  denote the joint 

angles. 1L , 2L , 3L , 4L and 5L  denote the length of each link 

and 1=iL meter. The Lagrange-Euler equation and the 

Lagrangian function are defined as (6) and (7). 
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where 
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The gravitational acceleration is [ ]081.900 −=g


. τ  

denotes the control element vector at each joint and 

im denotes the mass of the i -th link. 1=im Kg. 

III. DIRECT COLLOCATION WITH NONLINEAR 

PROGRAMMING 

A. Discretizing the trajectory 

DCNLP discretizes the time history of EOM into 100 
segments in this study. What it actually does is that DCNLP 
approximates (6), which is a set of 10 first-order differential 
equation, into a hundred sets of difference equations. Within 
each segment, cubic polynomials are formed to approximate 
the solution by using Hermite-Simpson’s interpolation [5][6]. 
The slope of the cubic at the center of the segment is defined 
as '

cx . In the meantime, the time derivative of any state 

variable at any time, denoted as cf , is available from (6). 
Once the defect functions  

( ) ( )14
1

12
3'

++ ++−+=−=Δ iiiiTccci ffxxfxf  are defined 

[7], they serve as a group of 10010× constraint functions. As 
soon as DCNLP drives all the defect functions to zero, the 
numerical iteration converges and the optimal solution is 
found. 

B. The cost function and bead constraint functions 

This study requires the manipulator to weld up the two 
cylinders along the intersection. Since least-energy 
maneuvering control is the major tone of this study, the cost 
function is laid out as (11). 
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The equations of the cylinders are ( ) 21.122 =++ ayx  

and ( ) 21.122 =++ zay . a  is the offset distance between 
the cross-point of the cylinder centerlines and the origin. The 
intersection is comprised of eight segments of bead. See (12). 
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The exact position of end-effectors is obtained by the five 
homogeneous transformation matrices. 
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where ( )( )tc ii θcos=  and ( )( )ts ii θsin= .  

IV. SIMULATION AND RESULTS 

For the sake of clearness of visual effect, only one of the 
eight beads will be looked into in this work. The offset 
distance a  is set to be 2 meters. The manipulator is 
requested to finish the welding task on each bead exactly 
within ft  seconds. The specified ft  is 1.1 seconds which 

corresponds to the radius of the cylinders in (12).  
Case 1:  The end-effectors track along the bead from the 

upper left shoulder to the central front center of the body. 
The motion-still diagram of the manipulator is shown in Fig. 
2. The cost 1J of Case 1 is 2897.3255 which is found after 
the iteration. 

Case 2: The end-effectors track along the bead from the 
upper right shoulder to the central front center. See Fig. 3. 
The simulation indicates 2J is 1537.8889. It is to the 
authors’ surprise that Case 2 takes less J than Case 1 does 
with a magnitude of half. Since Case 1 and Case 2 are 
nothing but symmetric operations with respect to y


axis, the 

significant gap in J brings up curiosity to the authors. Thus 
Case 1 is investigated again.  

Case 3: This case repeats what Case 1 does but two 
additional actions need to be added first in order to coach 
DCNLP how to work out a better iteration.  
 Since Case 3 may be anticipated to be a mirror 

image operation of Case 2, the initial guess of 
( )01θ of Case 3 is set to be °−° 4453.6180 , i.e. 

°5547.173 , where °4453.6  is the initial value of 
( )01θ of Case 2 previously determined. 

 Since Case 2 and Case 3 should ideally be 
symmetric operations with respect to y


, authors 

suggest that the torque outputs  ( )t1τ of  actuator #1 
in Case 2 may flip the signs first and then be 
borrowed into Case 3 to be used as initial guess  of  

( )t1τ  before kicking off the iteration.   
These two additional edifications efficiently escort the 

numerical iteration to an eye-brushing new result. The new 

3J  is no longer 2897.3255 but is 1527.8424. However, 

( )01θ  of Case 3 is optimally selected to be °− 7948.10 rather 
than °5547.173  by computer. See Fig. 4 and Table I. 

TABLE I.  VALUES OF THE THREE COST FUNCTIONS 

 Three Welding Cases 

Case 1 Case 2 Case 3 

J  1J =2897.3255 2J =1537.8889 3J =1527.8424 

 

 
Figure 2.  Motion-still diagram of Case 1. 

 

Figure 3.  Motion-still diagram of Case 2. 
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Figure 4.  Motion-still diagram of Case 3. 

V. CONCLUSIONS 

It takes less energy to rotate a body if its moment of 
inertia is reduced. In Case 1, the manipulator extends its link 
length-wise while the motion is ongoing. However, in Case 2 
it seems that the links are folding up when the manipulator 
tries to complete its task. See Figs. 2 and 3. That explains 
why 2J  is smaller than 1J .  

According to Figs. 3 and 4, one can tell that the 
movements of links 1, 2 and 3 of Case 3 mainly stay in the 
first quadrant yet the movement of the same links of Case 2 
span throughout the entire first and second quadrants. For 
this reason, 3J  is smaller than 2J . It again justifies that the 
numerical results found by DCNLP act in accordance with 
simple physics.  

Comparing with indirect Runge-Kutta method, DCNLP 
does not discriminate how un-precisely the initial guesses are 
given for the iteration to start with. It may take some time for 
the iteration to converge but the convergence is always 
guaranteed. This is the forte of DCNLP. Cases 1 and 2 start 
with ( ) 0


=kx plainly as the initial guesses where 1011 ≤≤ k . 

Both of them converge smoothly in their respective iterations. 

 As far as numerical method approach is concerned, it is a 
persistent nightmare that DCNLP might unearth a solution of 
local minimum particularly for a problem as complicate as (6) 
and (7). In this study, there are 1000 constraints subject to 
EOM and another 303 constraints subject to bead tracking. 
There are also 1510 state parameters waiting to be optimized. 
Case 1 and Case 3 are two existing extremities. DCNLP 
converges on both of them. However DCNLP fails to 
exclude Case 1 which is a local minimum. Conway suggests 
that Genetic Algorithm (GA) may be used to sniff out where 
the global or neo-global minimum solution is hiding in the 
solution domain [8]. The solution obtained from GA is then 
piped down to DCNLP serving as an initial guess, and then 
allow DCNLP to figure out the exact final optimal solution.  

VI. FUTURE WORKS 

The links of the manipulator arm often slew into the two 
cylinders in the process of welding. A path planning 
regarding obstacle avoidance and navigation is definitely 
needed to prevent the manipulator from damaging the 
welding pieces.  

REFERENCES 
[1] Brian R. Geiger, Joseph F. Horn, Anthony M. DeLullo, and Lyle N. 

Long, “Optimal Path Planning of UAVs Using Direct Collocation 
with Nonlinear Programming,” AIAA Paper No. 2006-6199, AIAA 
GNC Conference, Aug., 2006. 

[2] K. S. Fu, R. C. Gonzalez, C. S. G. Lee, Robotics: Control, Sensing, 
Vision, and Intelligence, McGraw-Hill Book Company, 1987. 

[3] A. E. Bryson Jr., Y. Ho, Applied Optimal Control, Hemisphere 
Publishing Corp, New York, 1975. 

[4] C. R. Hargraves, and S. W. Paris, Optimal Trajectories by Implicit 
Simulation (OTIS), AFWAL-TR-88-3057, Nov. 1988. 

[5] Jyun-jye F. Chen, Neighboring Optimal Feedback Control for 
Trajectories Found by Collocation and Nonlinear Programming, Ph.D. 
Thesis, University of Illinois at Urbana-Champaign, 1996. 

[6] A. L. Herman and B. A. Conway, “Direct Optimization Using 
Collocation Based on High-Order Gauss-Lobatto Quadrature Rules,” 
J. of Guidance, Control, and Dynamics, Vol. 19, No. 3, pp. 592-599, 
May-June 1996. 

[7] Philip E. Gill, Walter Murray and Michael Sanders, User’s Guide for 
SNOPT 5.3: a Fortran Package for Large-scale Nonlinear 
Programming, Stanford Business Software, Inc., 1998. 

[8] B. C. Conway, “A Survey of Methods Available for the Numerical 
Optimization of Continuous Dynamic Systems,” J Optim Theory 
Appl (2012) 152:271-306, doi 10.1007/s10957-011-9918-z 

 
   

.  

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

0951




