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Abstract—Unlike traditional classification problem, multi-label 
learning task is to predict a label set with unknown size for an 
example. While the exponential number of possible label sets 
challenges the task of multi-label learning. Many approaches 
by manipulating labels have been proposed. In this paper, we 
propose a new method via manipulating labels for multi-Label 
Learning: adding a virtual label to the original label set, 
appending the label subset selected by mutual information for 
each pairwise labels to the original feature set, and finally 
learning a binary classifier for each pairwise labels. Extensive 
experiments show that, compared with advanced multi-label 
methods, the proposed method induces models with 
significantly better performance.. 
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I.  INTRODUCTION  

Unlike traditional classification, multi-label learning 
associate an example with multiple labels and its task is to 
predict the proper labels for the unseen example. 

Multi-label learning widely exists in practical problems 
such as each document including several topics (economics, 
volunteers and so on) and one image containing several 
objects (building, sunset, sea, trees and so on). 

However, one problem existing in multi-label learning 
problem is efficiency. In principle, given a label set with M 
labels, there are 2M - 1 label combination candidates for an 
unseen example, which is computational infeasible by 
enumerating all candidates to find the best one. Another 
equally important is label imbalance. Since examples of the 
rare label occur infrequently, many existing models can not 
effectively detect the examples. 

Many multi-label learning methods have been proposed 
to tackle these problem. These methods can be roughly 
grouped into two categories: those based on problem 
transformation [1, 2] and those based on algorithm 
adaptation [3]. The former transforms the learning task into 
one or more single-label classification tasks, each of which a 
traditional single-label classifier learning method (e.g. k-
nearest neighbor [2]) is applied to. The latter extends a 
specific traditional method (e.g. decision tree) to handle 
multi-label data directly [3]. 

In this paper, we contribute a new multi-label learning 
method called MCML (Multi-label Classification via 
Manipulating Labels) based on problem transformation. 
MCML firstly adds a virtual label to the original label set 
and sort the label set. Then, for each pairwise labels (ci, cj), 
the labels selected by feature selection methods (e.g. mutual 
information) are also treated as traditional attribute. Finally, 
MCML learns a binary classifier for each pairwise labels (ci, 

cj). For prediction, all the classifiers vote the corresponding 
labels and the final model predicts an unseen example based 
on the votes. The experimental results show that, compared 
with other state-of-the-art methods, MCML induces models 
with significantly better performance. 

The remainder of this paper is structured as follows: after 
reviewing the related work in next section, section III 
introduces the proposed metric. Section IV presents the 
experimental results, and finally, section V concludes this 
paper. 

II. RELATED WORK 

A. Feature Selection and Mutual Information 

Feature selection is a fundamental method in data mining 
to select an optimal/suboptimal feature subset and cast away 
irrelevant redundant features from an original feature set. 
Many metrics have been proposed to evaluate the correlation 
of two or more features (variables), in which mutual 
information is among the most popular ones [4]. 

The mutual information of two random variables is a 
quantity that measures the mutual dependence of two 
variables. Formally, the mutual information of two discrete 
random variables X and Y is defined as: 
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where p(x, y) is the joint probability distribution function 
of the two discrete variables X and Y, and p(x) and p(y) are 
the marginal probability distribution functions of X and Y 
respectively. If I(X, Y) is large, the mutual dependence of 
variables X and Y is large, otherwise small. 

In practice, mutual information calculated by Eq. 1 is 
susceptible to noisy data.  Su and Zhang [5] use a threshold 
to affirm the reliability of dependence of two variables, 
defined as: 
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where N is the number of observed examples, λ is a 

constant and 
Y
XT =|χ||γ|. If I(X, Y) > ρ(X, Y), the dependence 

between X and Y is significant. 
In this paper, we apply this metric based feature selection 

method as candidate to multi-label learning problem, though 
many metrics based method can be adopted immediately, 
that will be one of our future work. 
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B. Multi-label Learning 

This section only focuses on learning methods based on 
problem transformation, since the proposed method in this 
paper also belongs to this type. 
Algorithm 1: TRAINNING 
Input: training dataset D, and the mutual information I(ci, cj) 
Output: classifier H 
1: for each class ci ∈{c0, c1,...cK} do 
2:     for each class cj ∈{ci+1, ci+2,...cK} do 
3:  Lij = {}; 
4: for each class cl∈{c0, c1,...cK} do 
5:                  if I(cl, ci) > ρ(cl, ci) ^ I(cl, cj) > ρ(cl, ci)then //refer to Eq. 2 
6:  Lij = Lij∪{cl}; 
7:          end if 
8:  end for 
9:   D' ={}; 
10:   for instance (x, Y) ∈D do 
11:         if yi ≠ yj then 
12:   Dij = Dij∪{(x, Lij), (yi, yj)}; 
13:         end if 
14:    end for 
15:  training tbinary classifier Hij for pairwise (ci, cj) on Dij; 
16:      end for 
17: end for 
18: return H; 

 
Algorithm 2: CLASSIFY 
Input:  unseen example x, and classifier H; 
Output: predicted label set Z 
1: N = 0; //the vector whose each element Ni is the number of votes of H 

on class ci 
2: Z = 0; 
3: for each classifier Hij∈H do 

4:  
ijHN ++; 

5: end for 
6: for each class ci ∈{c1, c2,...cK} do 
7:  if Ni ≥ N0 then 
8:   zi = 1; 
9:  end if 
10:end for 
11:return Z; 

The most widely employed method of problem 
transformation is Binary Relevance (BR) [1] which learns 
one binary classifier Hi for each label c ∈ {c1, c2, ... cn}, i.e., 
Hi: x→{ ¬ci, ci}, where x is an example described by feature 
set X. BR produces the final decision by combining the 
predictions of all classifiers on an unseen example. In this 
way, BR achieves fast learning and prediction. However it 
suffers from the label independence assumption, and fails to 
take advantage of any relations between labels. 

As an extension version of BR, Classifier Chain (CC) [6] 
utilizes the correlation of labels by ordering label set L = {c1, 
c2, ...cn}. Like BR, CC trains one classifier Hi for each label 
ci, i.e., Hi: x x→{¬ci, ci}. Unlike BR, when training the 
classifier for label ci, CC treats the former labels (c1, c2, ci-1) 
as features. 

Another approach of utilizing the correlation of labels is 
called calibrated label ranking (CLR) [7,8]. Unlike CC, CLR 
first adds a virtual label to label set and then learning a 
classifier Hij for each pairwise label set (ci, cj),  i ≠ j, i.e., Hij: 
x →{(¬ci, cj), (ci, ¬cj }. For prediction, all the classifiers vote 

the corresponding labels and the final result can be got 
according to the votes on each label. 

This paper proposes a new method called MCML to 
utilize the correlation of labels for multi-label learning. 
Unlike BR, MCML trains a classifier for each pairwise labels 
set, as CLR does. Unlike CLR, MCML treats the labels 
forehead pairwise labels as features, as BL does. Besides, 
MCML applies feature selection technique to tackle with the 
features obtained from labels to increase model performance, 
that is different from both BR and CLR. 

III. PROPOSED METHOD 

Let D = {xi| i = 1, 2,...n} be an example set where each 
example xi is associated with a indicator vector Yi=(y1, y2,... 
yK), yi∈{0, 1}. yj = 1 if cj is an desired label associated with 
xi and 0 otherwise. Let Zi = {z1, z2....zK} be an indicator 
vector in which zj∈{0, 1} indicates whether label cj is 
predicted to be a real label associated with example xi. 
Therefore, the diversity between the desired label set 
associated with each example and the real label set predicted 
on the example can be obtained according to Yi and Zi. 

The main idea of MCML is as follows. Firstly MCML 
adds a virtual label c0 to label set C={c1, c2,... cK} and orders 
the label set. For simplicity, we assume that the ordered label 
set is C={c0, c1,...cK}. Then MCML iterative trains a 
classifier for each pairwise labels (ci, cj), 0 ≤ i < j ≤  K. For 
current pairwise labels (ci, cj), it appends the label subset 
obtained from { c1, c2,...ci-1} by Eq. 1 (mutual information) 
and Eq. 2 to feature set, and then learns a classifier Hij for the 
pairwise labels on dataset Dij ⊆D obtained by selecting the 
examples each of which one and only one of the labels ci and 
cj is associated to. For prediction, each classifier Hij votes an 
unseen example to be ci or cj. The label with votes number 
greater than the votes on label c0 is predicted to be a real 
label of this unseen example. 

The specific details of MCML's training procedure are 
shown in algorithm 1. MCML iteratively builds a classifier 
for each pairwise labels. For current pairwise (ci, cj), it first 
constructs new features for the pairwise using Eq. 1 and Eq. 
2 (lines 4-8), then constructs data set Dij for training 
classifier Hij (Lines 10-14), and finally training Hij (line 15). 
The details of MCML's classification procedure is shown in 
algorithm 2. It first statistics the votes of H on example x 
(lines 3-5), and then decides whether each class ci is a label 
of x (lines 6-10). If the votes on ci is not less than the votes 
on virtual label c0, ci is a label of x. Otherwise, ci is not a 
label of x. 

IV. EXPERIMENTS 

A. Evaluation Metrics 

Four evaluation metrics are employed to evaluate the 
performance of the proposed method [1]:  Hamming-loss, 
One-error, Coverage and Ranking-loss.  

The Hamming loss is defined as: 
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where Yi=(y1, y2,... yK) , yi∈{0, 1} is an indicator vector: 
yj = 1 if cj is an desired label associated with xi and 0 
otherwise. Zi = {z1, z2....zK} be an indicator vector in which zj

∈{0, 1} indicates whether label cj is predicted to be a real 
label associated with example xi, as defined before. △ stands 
for the symmetric difference of two sets, which is the set-
theoretic equivalent of the exclusive disjunction (XOR 
operation) in Boolean logic.  

One-error evaluates how many times the top-ranked label 
is not in the set of relevant labels of the instance 
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Coverage evaluates how far we need, on average, to go 
down the ranked list of labels in order to cover all the 
relevant labels of the example. 
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Coverage is normalized to [0, 1] by Cov/|L|. 
Ranking loss expresses the number of times that 

irrelevant labels are ranked higher than relevant labels: 
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The smaller the four metric, the better the corresponding 
algorithm is. 

Tabel 1.  The details of experimental data sets 
DataSet Dom m |F| |L| LC LD 

medical text 978 1449 45 1.245 0.028

genbase biology 662 1186 27 1.252 0.046

yeast biology 2417 103 14 4.237 0.303

emotions music 593 72 6 1.869 0.311

scene image 2407 294 6 1.074 0.179

enron text 1702 1001 53 3.378 0.064

B. Data Sets 

Six multi-label data sets obtained from four domains (text, 
biology, music and image) are used for experiments to 
evaluate the performance of the proposed method. The 
details of the data sets are shown in Table 1: the name of 
data set (DataSet), the domain (Dom), instances size (m), the 
number of labels (|L|), feature numbers (|F|), label cardinality 
(LC) and label density (LD), where cabel cardinality of a 
dataset D is the average number of labels of the examples: 

1
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and Label density of D is the average number of labels of 
the examples in D divided by q: 
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These data sets can be download from 
http://mulan.sourceforge.net/datasets.html. For each set, a 
ten-fold cross-validation is performed. 

C. Experiment Setup and Results 

CC [1], CLR [7, 8] and MLKNN[2] are selected as 
candidate comparing method to evaluate the performance of 
MCML, where the base classifier is J48, which is a Java 
implementation of C4.5 [9] from Weka [10]. In MLKNN, we 
set k =10 and set Euclidean distance as default distance 
measure. The four popular measures discussed in section 
IV.II are selected for evaluating the performance of multi-
label learning methods, i,e. hamming loss, one-error, 
coverage and ranking loss. The smaller the value of the four 
measures, the better the performance of the corresponding 
algorithm. Furthermore, we set λ=5 in Eq. 2 and use |L| (the 
size of label set) to normalize Coverage to be a value in [0,1]. 

The performance results in terms of hamming loss, one-
error, coverage and ranking loss are shown in Table 2, Table 
3, Table 4 and Table 5 respectively, where •/◦ next to a result 
indicates that MCML is significantly better/worse than the 
respective method (column) for the respective data set (row) 
with pairwise t-test at 5% significance level. As shown in the 
Table 2, Table 3, Table 4 and Table 5, MCML significantly 
outperforms other advanced multi-label learning methods on 
all of the four metrics, since MCML employs the virtues of 
between CC and CRL, and applies feature selection 
technique to remove redundant feature to improve classifier 
accuracy. This results also validates the conclusion: 
reasonably utilizing label correlation can improve the 
performance of multi-label classifiers [1]. 

V. CONCLUSIONS 

This paper contributes a new multi-label method which 
employs both pair-wise ranking technique and feature 
selection technique for multi-label classification. Empirical 
results show that the proposed method to construct multi-
label classifiers leads to significantly better accuracy results 
compared to state-of-the-art methods. 

As discussion in section II.I (Feature Selection and 
Mutual Information), many feature selection methods can be 
applied to the proposed method immediately. Therefore, one 
of our future work is to extensively study the effectiveness of 
feature selection on multi-label learning. Many label ranking 
methods which we have not discussed in this paper, and thus 
another our future work is to explore the relationship 
between feature selection and label ranking. 
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Table 2. Performance (mean±std) of each algorithm in terms of hamming loss 

Data set MCML CC CLR MLKNN 

medical 0.0100±0.0009 0.0102±0.0017  0.0104±0.0009 • 0.0151±0.0020 • 

genbase 0.0013±0.0008 0.0011±0.0006  0.0013±0.0008  0.0050±0.0027 • 

yeast 0.1838±0.0056 0.2682±0.0071 • 0.2202±0.0091 • 0.1933±0.0123 ◦ 

emotions 0.2249±0.0282 0.2550±0.0181 • 0.2423±0.0286 • 0.1951±0.0243 • 

scene 0.1023±0.0093 0.1444±0.0164 • 0.1383±0.0089 • 0.0862±0.0084 ◦ 

enron 0.0427±0.0019 0.0524±0.0024 • 0.0471±0.0019 • 0.0524±0.0020 • 

•denotes that MCML outperforms compared algorithms with pairwise t-test at 5% significance level and ◦ is outperformed by 
compared algorithms. The notations in the following tables have the same meaning. 

Table 3. Performance (mean±std) of each algorithm in terms of one error 

Data set MCML CC CLR MLKNN 

medical 0.1432±0.0333 0.1862±0.0404 • 0.1637±0.0267 • 0.2403±0.0465 • 

genbase 0.0015±0.0045 0.0030±0.0061  0.0015±0.0045  0.0136±0.0158   

yeast 0.2097±0.0312 0.3562±0.0222 • 0.2412±0.0379 • 0.2292±0.0336   

emotions 0.2378±0.0538 0.4353±0.0447 • 0.3154±0.0751 • 0.2835±0.0740 • 

scene 0.1645±0.0227 0.3914±0.0453 • 0.3020±0.0404 • 0.2239±0.0304 • 

enron 0.1546±0.0289 0.4201±0.0289 • 0.2315±0.0436 • 0.3050±0.0280 • 

Table 4. Performance (mean±std) of each algorithm in terms of ranking loss 

Data set MCML CC CLR MLKNN 

medical 0.0387±0.0093 0.1029±0.0238 • 0.0404±0.0090 • 0.0586±0.0153 • 

genbase 0.0015±0.0045 0.0238±0.0126 ◦ 0.0238±0.0126  0.0204±0.0115   

yeast 0.4531±0.0108 0.6316±0.0164 • 0.4786±0.0171 • 0.4452±0.0146   

emotions 0.2834±0.0337 0.4225±0.0381 • 0.3134±0.0242 • 0.2981±0.0272   

scene 0.0629±0.0088 0.2251±0.0334 • 0.0985±0.0108 • 0.0791±0.0091 • 

enron 0.1991±0.0179 0.4366±0.0340 • 0.2119±0.0164 • 0.2475±0.0190 • 

Table 5. Performance (mean±std) of each algorithm in terms of coverage 

Data set MCML CC CLR MLKNN 

medical 0.0246±0.0091 0.0812±0.0235 • 0.0261±0.0091 • 0.0403±0.0099 • 

genbase 0.0082±0.0057 0.0028±0.0036 ◦ 0.0082±0.0057  0.0060±0.0058   

yeast 0.1459±0.0084 0.3238±0.0153 • 0.1783±0.0131 • 0.1652±0.0126 • 

emotions 0.1448±0.0316 0.3066±0.0367 • 0.1784±0.0282 • 0.1633±0.0320   

scene 0.0593±0.0101 0.2489±0.0370 • 0.1011±0.0135 • 0.0773±0.0116 • 

enron 0.0636±0.0077 0.1719±0.0161 • 0.0715±0.0078 • 0.0922±0.0088 • 
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