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Abstract—The performance of keyword spotting system suffers 
severe degradation when the index stage is so fast that the 
lattice may lose lots of information to retrieve the spoken 
terms . In this paper , We focus on this problem and present an 
approach named unconstraint word graph expansion (UWGE) 
to keep the pruned hypotheses which are discarded in the 
decoding procedure but may contain correct hypotheses. The 
proposed approach is to eliminate the N-gram language model 
state limitation of lattice and reconstruct lattice to 
unconstrained word graph. On two Mandarin conversation 
telephone speech sets, we compare performance using UWGE 
with that on traditional trigram lattice , and our approach 
gives satisfying performance gains over trigram lattice. We 
also show the relationship between the performance and the 
system speed based on this approach. 

Keywords- spoken term detection, unconstraint word graph 
expansion, N-gram lattice limitation 

I. INTRODUCTION  

The ever growing volume of recorded speech data 
collect-ed from telephones, cell phones and internet 
conversation etc, poses great challenge for the spoken 
language processing te-chnologies . Keyword spotting is a 
very important branch of speech recognition, which is the 
task of detecting the occur-rences of predefined keywords in 
the unconstrained audio s-tream. 

The existing work done in keyword spotting can be cate-
gorized under three major approaches. The first approach is 
acoustic keyword spotting approach. In this approach, all w-
ords other than the keywords assumed to be garbage and are 
represented by garbage models. The second approach is La-
rge Vocabulary Continuous Speech Recognition (LVCSR) 
approach. This approach requires complete decoding of sp-
eech signal and it outputs a completely decoded sentence [1]. 
The third approach of keyword spotting is a state-of-the-art 
approach making use of lattice (word graph) which contains 
alternate candidates of the decoding result. Keyword spotting 
uses the search in lattice and outputs whether a keyword is p-
resent in a signal or not. In this paper, we use syllable lattice 
in our system to search the spoken terms which has the high 
recall rate of the hypotheses than the word lattice [2]. 

Facing the challenge of huge mount of data, the keyword 
spotting system must be able to access the audio as fast as 
possible. However, the performance of the system severely 
suffers from a very high missing rate which leads to a serious 
performance degradation when the system speed is tuned to 
so fast as 0.36xReal-Time (RT) or more. In this paper, we 
consider the problem of the recall rate and propose an app- 

roach named unconstrained word graph expansion 
(UWGE). This is done by rebuilding the N-gram lattice into 
another form: unconstrained word graph. We eliminate the 
language model limitation of N-gram lattice and can retain 
most of the hypotheses generated in the decoding procedure, 
some of which may be pruned owing to the inherent limit-
ations of the N-gram lattice generation algorithm. Our exper-
iment results show that there are improvements in both fig-
ure of merit (FOM) score and equal error rate (EER) score. 

The rest of the paper is organized as follows: In Section 
2,we shows the architecture of our system; In Section 3, we 
discuss the lattice generation algorithm and baseline keywo-
rd spotting paradigm; Section 4 describes the limitation of 
the N-gram lattice and proposed method in detail; Experime-
ntal results are presented in Section 5, followed by conclu-
sions in Section 6. 
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Figure 1.  The framework of the system 

II. SYSTEM ARCHITECTURE 

Figure 1 shows the overall architecture of our system for 
Mandarin spoken term detection. There are two stages in the 
system: At the index stage, the audio is fed into a large voca-
bulary continuous speech recognizer (LVCSR) [3], which 
outputs syllable lattices and we convert the lattices to index 
[4]. At the search stage, all the query terms are turned into 
syllable form, and hits of all query terms are retrieved from 
the inverted index. The ranker computes confidence measu-
rement scores, and a result presentation module creates out-
put result list with every hit’s position and score. 

III. REVIEW OF THE LATTICE BASED KEYWORD SPOTTING 

In this section, we will introduce the lattice generation algo-
rithm and the base idea of the lattice based keyword spotting. 
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A.  Lattice generation 

The purpose of lattice indexing is to retain alternative 
candidates that the recognizer also considered, with their 
associated probabilities. As the production of Viterbi search 
of a recognizer, a lattice is a weighted directed acyclic graph 
(DAG) [5]. It is defined as },,,,,{ endstart vvLWEVG =  

where arcs E represent the syllable hypotheses with 
recognizer weight W  and ID L , and nodes V  are the 
connections between them, encoding times and N-gram 
language model state. 

startv  and Vv end ∈  are the unique 

initial and final node [6], respectively. 
    During the decoding procedure, each hypothesis is an N+1 
tuple );,...,,( tsvu  which means the current s is a hypothe-

sis ended at time t and its N-1 hypotheses’ N-gram history is 
,...),( vu  [6]. The lattice records the pair of each hypothe-

sis’ time boundary and language model state. For every pair, 
the lattice will create a node to represent the time and langu-
age state and create an arc for the hypothesis defined on this 
pair. Then the lattice connects the arc to its start and end no-
de. To remain the lattice’s graph structure, the dead paths 
will be erased from the lattice [7]. 

B. Lattice based keyword spotting 

    Given a query Q we decompose it into a sequence of syll-

able unit , },...,2,1,{ Qjs j = . Thus we search the N-gram 

},...,,{ 21 Qsss  in the lattice, and calculate the confidence 

measurement of the N-gram [8]. Given the syllable s  which 

has the start node sv  and end node ev , the recognizer score 

of a hypothesis is used as the arc weigh: 

)|(),,|)...((
1

,, sesvvvsv vspvsvttOpq
eses

•= λ       (1)  

 
Where  ),,|)...(( esvv vsvttOp

es
 is the likelihood for aco-

ustic observation )...(
es vv ttO  given hypothesis s, its time 

boundary  ),( es tt  , and its cross-word triphone context  

),( es vv . )|( svsp   is the language-model (LM) probabi-

lity of the hypothesis s to follow its LM history (encoded in 

sv ).  λ  is the LM weight which is used to adjust acoustic 

likelihood and LM probability. When we search for the spo-
ken terms, we use word posterior probability to represent the 
confidence measurement of the occurrences [9]. It is defined 
over paths, and *----* es tst  denotes the set of paths wh-

ich contain s with boundaries ts and te. To compute it, we 

sum all nodes ),( es vv  with given time points  ),( es tt  : 
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Where the arc posterior )O|*-v---(* esvp s
 is compu-

ted as: 
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And the forward probability 

svα and backward probability 

evβ  represent the sum over all paths from sentence start 

enterv  to 
sv  and 

ev  to sentence end 
exitv , respectively. 

They can be computed conveniently with the forward-
backward recursion [10]. 

enterv   is the total probability over 

all paths . So, the probability of the spoken terms can be 
computed as: 


∈

=
Terms

s

i

ii
POQP )*-v-s-v-(*)|( ei

             (4) 

Where the Q ’s probability )|( OQP  is computed by 

summing over m-arc paths with the given time boundaries st  

and et s [2]. 

IV. PROPOSED METHOD 

In this section, we will discuss the limitation of the N-
gram lattice generation algorithm and propose our method to 
overcome the limitation. 

A. The limitation of N-gram lattice 

In the N-gram lattice, there must be at least one path 
starting from the initial node 

enterv  and ending at the exit 

node exitv  for each node in the lattice. This property of graph 

reachability ensures that the lattice is a fine graph structure 
which could be implemented by the forward-backward 
algorithm. However, on the other hand, it makes the lattice 
unable to preserve the dead paths which mean the paths can’t 
be expanded. There will be no paths passing through from 

the last node ev  of the dead path to the end node 
exitv  if the 

dead path stays in the lattice, so they are cleaned from the 
lattice with the risk of information loss. 

Meanwhile, due to the limitation of the N-gram model, 
each hypothesis is an N+1 tuple );,...,,( tsvu . When the 
pruning happens, this N+1 tuple will be pruned from the 
lattice. However, the influence of path prune is a bit too long, 
and it affects not only the last hypothesis but also a series of 
hypotheses before it. As a result, plenty of hypotheses are 
pruned just because of their dead successor arcs in the N-
gram lattice. 

When the speed of system is slow, the N-gram lattice 
could be large enough to keep the information for spoken 
term detection, but when the speed is fast there may be few 
paths kept in the structure and the performance is near to that 
of the STT (speech-to-text) script with confidence mea-
surement produced by the decoder directly. 
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(a) Trigram Lat. prune strategy 

 
(b) UWGE Lat. prune strategy 

Figure 2.  Comparison of prune strategy 

B. The unconstrained word graph expansion algorithm 

According to the limitation of N-gram lattice, we hope to 
keep most information from the decoding procedure by 
adjusting the lattice generation algorithm. The purpose is to 
ensure that here will be a short influence when the path 
pruning occurs, and the key is to eliminate the limitation of 
the N-gram language model. 

The proposed UWGE algorithm is the approach to 
eliminate language model state on the nodes, which means 

V∈∀v  encodes time only. This approach is used only in 
index stage to change the structure of lattice and does not 
affect the search stage. We connect the arcs with same time 
boundaries to the same nodes and do not consider the history 
information, so when path pruning happens, the arcs before 
the pruned hypothesis will not be pruned due to the 
independent relationship with the hypothesis. The difference 
between constrained word graph and N-gram lattice is only 
the definition of the node, and the unconstrained word graph 
remains a weighted directed acyclic graph (DAG) and 
suitable for forward-backward algorithm to compute the 
posterior of every arc. The probability computation of the 
spoken terms is still the same as the N-gram lattice as shown 
in Eq (4). 

As shown in Figure 2, there is a comparison of the pruned 
path processing method between the trigram lattice and un-
constrained word graph. Panel (a) shows that the dead path 
in the rectangular filled with lined spots will discard the last 
N-1 arcs before the dead end node v according to the N-gram 
limitation. On the contrary, Panel (b) shows the unconstrai-
ned word graph structure will discard only the last hypothes- 

Algorithm 1 unconstrained word graph generation algorithm 
1:   Create a node on current time frame t  
2: On each frame, we consider all of the N+1 tuple 

);,...,,( tsvu  and keep the start time boundary 

);,...,,( tsvuτ  

3: Create an arc )}(),(),(},{{ eleweEeSe =  on the word 

graph for each N+1 tuple. 
• }{eS  and )(eE  indicate the start time and end 

time 
• )(ew  is the weight of the arc as definition of  Eq(1)

• )(el   is ID of the hypothesis 

4: if 'e∃ , ));,...,,(()'( tsvuneS τ= , )()'( tneE =  , 

sel =)'(  then 

5: merge the e  and 'e  

6: if )'()( ewew <  then 

7: 'ee =  
8: else 
9: retain e   
10: end if 
11: connect the arc e with start node and end node 

• the start node : ));,...,,(()( tsvuveS τ=  

•  the end node : )()( tveE =  

12: end if 
13: erase the word graph and delete the dead paths [7] 
is. After the UWGE process, the lattice is turned into a 
sausage-like form and keeps every decoding hypothesis. 

The implementation of our approach is shown in Algori-
thm1 and there are some properties with the unconstrained 
word graph: 

• The unconstrained word graph generation algorithm 
will not affect the time of index stage, for the reason 
that it is only to reconstruct the graph structure. 

• There is no need to change the search strategy since 
the unconstrained word graph is still the structure 
suitable for other algorithms and the speed of index 
stage will not be affected. 

• The arcs with the same start and end nodes will be 
merged together and this may lead to a accurate loss . 

V. EXPERIMENTS 

A. Evaluation setup 

We conduct the experiments on two mandarin conver-
sation telephone (CTS) speech sets. Set1 is 1 hour long, and 
a hundred keywords are selected from this corpus with 397 
occurrences. This set is recorded in laboratory environment 
and the speakers do not have strong accent. Set2 is 10 hours 
long CTS set with a hundred keywords and 1934 occurrences. 
In this set, the speakers have strong accent and the record 
environment has background noises. 

For speech recognition, we use the Onepass recogni-zer. 
The acoustic model is trained with 400 hours of CTS data 
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with 39 dimension features (13-dimension PLP and their first 
and second order time derivatives). The system performance 
of spoken term detection is measured in 3 metrics: 

a) Equal error rate (EER): It is defined as a point in DET 
curve where false alarm rate (FA) equals to false reject rate 
(FR). 

b) Figure of merit (FOM): The NIST Figure Of Merit 
defined as the dectection/false-alarm curve averaged over 
[0..10] false alarms per keyword per h hours. 

c) Max recall rate (MaxRecall): It is the recall rate of all 
the keywords which are found by the system. 

B. Experimental results 

As shown in Table 1, based on the proposed method, the 
UWGE based keyword spotting performance gets 10.61% 
reduction on EER score and 9.29% improvement on FOM 
score relatively on average compared to the trigram lattice, 
and the MaxRecall has a 6.76% relative improvement than 
trigram lattice. The more information in the unconstrained 
word graph is the main reason for these improvements. 

TABLE I.  THE KEYWORD SPOTTING PERFORMANCE COMPARISON. 

System EER FOM MaxRecall 
Set1 

Trigram Lat. 
UWGE Lat. 

 
45.5 
39.7 

 
54.5 

59.52 
54.5 
60.3 

Set2 
Trigram Lat. 
UWGE Lat. 

 
59.77 
54.71 

 
39.25 
42.99 

40.23 
47.9 

We also compare the performance of the graph structure 
between unconstrained word graph and trigram lattice on 
Set1. We use the following metrics: 

a) The average number of hypotheses on each frame 
(Avr.#WE) : It is the average number of hypotheses genera-
ted during the decoding procedure on each frame. 

b) The average number of hypotheses kept in the graph 
on each frame (Avr.#Trace) : It is the average number of hy-
potheses kept in the graph on each frame. It may not equal 
to the number of arcs on each frame due to the merge proce-
dure of the UWGE algorithm. 

c) Graph word error rate (GER): It is computed by dete-
rmining that sentence through the word graph that best mat-
ches the spoken sentence. 

TABLE II.  THE LATTICE PERFORMANCE COMPARISON. 

system Avr.#WE Avr.#Trace GER 
Trigram Lat. 9.81 0.10 29.48 
UWGE Lat. 9.81 0.72 22.69 

In Table 2, we can see the unconstrained word graph has 
the same Avr.#WE with trigram lattice due to the same dec-
oding procedure but higher Avr.#Trace which means more 
hypotheses are kept in the unconstrained word graph. The 
GER of unconstrained word graph is much lower than that 
of trigram lattice and this indicates that unconstrained word 
graph contains more useful information. 

VI. CONCLUSIONS 

In this work, we focused on the performance degradation 
of the fast keyword spotting system and addressed the pro-
blem of how to get more information generated in the deco-
ding procedure. We aimed to get enough information from 
the decoding procedure directly and proposed an approach 
named unconstrained word graph expansion (UWGE) to eli-
minate the limitation of N-gram lattice and generate uncon-
strained word graph, which is still fine graph structure suit-
able for the forward-backward algorithm and improves the 
recall rate of keywords. On our test sets, we compared unco-
nstrained word graph with trigram lattice. The unconstrained 
word graph achieved better performance than trigram lattice 
on graph error rate (GER) etc. In the spoken term detection 
task, the experiments showed the unconstrained word graph 
gets better performance than trigram lattice in the fast keyw-
ord spotting system.  
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