
Accelerate Acoustic Likelihood Computations on GPU for Speech Recognition

Yong Liu, Zhen Zhang, Yujing Si, Qingwei Zhao, Yonghong Yan
The Key Laboratory of Speech Acoustics and Content Understanding, Chinese Academy of Sciences

Institute of Acoustics, Chinese Academy of Sciences
Beijing, China

{ liuyong, zhangzhen, siyujing, zhaoqingwei, yyan}@ hccl.ioa.ac.cn

Abstract—Acoustic likelihood computations is one of the most
computationally intensive part in the large vocabulary
continuous speech recognition (LVCSR). In this paper, we give
an introduction of accelerating acoustic likelihood
computations for graphical processing units(GPUs). According
to the optimal method, we achieve 11× speedup on the
acoustic probability evaluation.

Keywords: Speech Recognition, GMM,GPU

I. INTRODUCTION

After decades of research, the performance of automatic
speech recognition (ASR) systems in real usage scenarios
lags behind human level performance. The challenges
involve speed and accuracy. A lot of researchers use some
notable advances and new math or physical models in
training. In the field of acoustic model, the Hidden Markov
Model was be used[1, 2] and it had a great improvement on
the speech recognition. Then, minimum phone error (MPE)
[3, 4] were applied to the training of acoustic model.
Recently, deep belief network (DBN) [5-7] was successfully
introduced into the acoustic model and it shows the obvious
performance of decreasing the phone error comparing with
the GMM.

In the field of decoder[8] speed for LVCSR, a major
achievement is the architecture of weighted finite-state
transducers (WFST)[9-11]. WFST have an improvement on
the speed than the tree-decoder.

Because of the development of hardware, a lot of
researchers pay attention to the GPUs. Base on the
architecture of multi-core and Single Instruction Multiple
Data (SIMD), the GPU achieves an great speed up in the
graph algorithm[12-14]. So, it will be a tendency to use GPU
in the intensive computation, like speech recognition.

This paper is organized as follow. Section II gives an
introduction to speech recognition and acoustic model.
Section III shows the details of accelerate the GMM
probability computations, including the basic principle,
parallel reduction and matrix multiplication. Section IV gives
the experiment results. Concluding remarks and future
directions are reported in Section V.

II. SPEECH RECOGNITION AND ACOUSTIC MODEL

Speech recognition is the translation of spoken words
into text. For a simple isolated word recognition, each
spoken word be represented by a sequence of speech vectors
or observations O, defined as O = o1,o2,…,oT, where ot is the

speech vector observed at time t. The isolated word
recognition problem can be regarded as that of computing

)}|({maxarg OwP i
i

Where wi is the i’th vocabulary word. The probability can be
computed by using Bayes’ rule gives

)(

)()|(
)|(

OP

wPwOP
OwP ii

i =

P(O|wi) is the acoustic model which means a match
between an input feature and an element of a database of
known phones. In general, the acoustic model is evaluated by
Gaussian Mixture Model-Hidden Markov Model (GMM-
HMM). The GMM observation probability is a part of
acoustic model. In this paper, we only consider the GMM
and the HMM state transition probabilities are ignored.

The acoustic likelihood for a GMM is defined as:

))()'(
2

1
exp(

)2(

1
)(1

1
jctjcjct

jc
d

C

c
jctj uouoob

j  −Σ−−
Σ

= −

=


π
α

where)(tj ob


is the probability that distribution j generates

the d-dimensional observation vector to


at time t, Cj is the

number of Gaussians in the distribution j, αjc is the weight
of Gaussian c in distribution j, μjc and Σjc are the mean
vector and the covariance matrix of Gaussian c in
distribution j.

Generally, the GMM probability can be quickened by
Intel® Integrated Performance Primitives(IPP). By the
Streaming SIMD Extensions (SSE), IPP can be only cost one
fifth time than the normal loop instructions (by our
experience).

The observation probability is one of the most
computationally intensive phase. In the ASR system, it will
cost 50%-70% computation time and almost becomes the
bottleneck of decoder. In fact, just the active states’
probability need to be calculated and we can use the beam
pruning to decrease the computations.

There are plenty of methods to decrease the probability
evaluation time[7, 15, 16]. In this paper, we use the GPUs
and parallel reduction algorithm. Because of the multi-core
and SIMD structure[17], more Arithmetic Logic Unit (ALU)
and less Control Unit than CPU, GPU can solve more dense
and high parallelism task.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1019

III. ACCELERATE GMM LIKELIHOOD

COMPUTATIONS ON GPU

According to Equation GMM probability, the natural
logarithm likelihood of one Gaussian can be expressed as:

tjcttjcjc

jcjcjcjc
d

jctjc

ooou

uuob





1'1'

1'

2

1
2

1
))2ln((

2

1
ln)(

−−

−

Σ−Σ+

Σ−Σ−= πα

The first three terms are constant for a specific-GMM can be pre-computed. Denoting this term by hjc, it is:
jcjcjcjc

d
jcjc uuh

 1'

2

1
))2ln((

2

1
ln −Σ−Σ−= πα

For the other two terms, we can re-denote mean and
covariance:

)
2

1
(1

1'

−

−

Σ−=

Σ=

jcjc

jcjcjc

DiagV

uU


where 1−Σ jc is the diagonal covariance matrix. The

likelihood for a single Gaussian can be expressed as:
2')(tjctjcjctjc oVoUhob
 ++=

This equation means the computation can be expressed
by a dot-product:

)
2

1
,...,

2

1
,,...,,(

),...,,,,....,,,1(

11
11

1
1

1
111

22
2

2
121

−−−− −=

=

nnnnn

nn

uuhM

oooooosbo

σσσσ




Then the GMM probability will be expressed:

))exp()ln(exp()(log

)()(ln log
1

yxyxAdd

Msboob jc

C

c

tj Add

+=+

•=
=



Because of the structure of GPU, it will be fit for the
dot-multiply. The final logAdd operation can be finished by
basic parallel reduction algorithm.

A. Parallel Reduction

Based on the above description, we can store the GMM
model as followed:

where n is the dimensional of observation vector and the mix
number of Gaussian is c. Similarly, the observation vector
will be stored like this:

Assumed the warp num of GPU is 32 (the num of one

SIMD group, which means 32 threads will be run for one
instruction synchronous) and a block contains 256 threads.
Besides that, the GMM contains STATENUM states, the
num of Gaussians is 16 and the frame num is FRAMENUM
for once processing. We will get the follow algorithm. The

CPU function likes Fig. 1, then the GPU device kernel
function likes Fig. 2. The GPU code has two part: host
function and device kernel function. Host function will run
on CPU and device function will run on GPU device.

Figure 1. Reduction algorithm for host.

Figure 2. Reduction kernel algorithm for GPU device

A block of a GPU will output the probability of a state for a
frame and a grid will get FRAMENUM frames probability
for STATENUM states. At first, the kernel will get the dot-
multiply of model and observation, then loop accumulation
until the dimension less than 256. Secondly, the kernel will
run the parallel reduction for addition. Finally, the logAdd
function will be called when the dimension equal the mix
num of Gaussian-16.

The kernel has a problem of modifying. When the num of
Gaussian is not 16, like 32 or 128, the code must be revised.
When it is not the power of two, it will have more troubles.

__shared__ data[1024];
stateIndex←blockIdx.x;
frameIndex←blockIdx.y;
modelStride←(dimObv * 2 + 1) * dimMixGaussian;
baseModel←stateIndex * modelStride;
baseObv ←frameIndex * modelStride;
baseOutProb ← frameIndex * stateNum;
i←threadIdx.x; x←threadIdx.x;
data[i] ←0;
while(i < modelStride)
{

data[x] += model[baseModel + i] *
 obv[baseObv + i];

i += 256;
}
__syncthreads();
if(x < 128) then
{ data[x] += data[x+128]; __syncthreads();}
if(x < 64) then
{ data[x] += data[x+64]; __syncthreads(); }
if(x < 32) then
{

data[x] += data[x+32];
data[x] += data[x+16];
data[x] ← logAdd(data[x],data[x+8]);
data[x] ← logAdd(data[x],data[x+4]);
data[x] ← logAdd(data[x],data[x+2]);
data[x] ← logAdd(data[x],data[x+1]);

}
if(0 == x) then

outProb[baseOut + x] ← data[0];

dim3 grid(STATENUM,FRAMENUM);
dim3 block(256);
ReducationKernel<<<grid,block,1024>>>(model,
stateNum, dimMixGaussian, obv, dimObv, outProb)

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1020

In the algorithm of Fig. 2, the parallel reduction algorithm
is used. The reduction can decrease the complexity of o(n) to
o(log2n). It is very common for multi-core computation. The
basic principle is following:

Figure 3. Parallel reduction algorithm

B. Matrix Multiplication

Because of the extend limit of the previous idea, we can
change the store pattern of model and observation. Besides
that, we will make most use of matrix multiply
implementation [18]. Always, the basic matrix multiply
library will effectively use the computation of process than
the kernels by ourselves. Moreover, the matrix multiplication
will be fit for the volatile mix num of Gaussian.

In our designer, the i-th state of the model will be saved
like that Mj=

It is a c rows and (2n+1) cols matrix which c is the mix

num of Gaussian and n is the dimension of observation. So,
the j-th frame observation is saved as Oi=:

For a state, the probability of every Gaussian MP(c,i,j) is

result of the matrix M(i) multiplying the matrix O(j). After
the matrix multiply, the probability of a state P(i,j) is the
logAdd of every dimension MP(c,i,j).

)),,((),(

))((*)(j)i,MP(c,

log
1

jicMPjiP

iOiM

Add
C

c

T

=

=

=

where MP(c, i, j) is the c-th mix probability of j-th frame for
the i-th state and P(i, j) is the j-th frame probability for the i-
th state.

When we deal with multi-state and multi-frame, the store
pattern is :

 Left is the model and right is the multi-frame observation.
The model is a matrix of c* StateNum rows and (2n+1) cols.
The observation is a matrix of frameNum rows and (2n+1)
cols. The probability of every mix Gaussian MP is matrix M
multiply the transposition of matrix O. Finally, the logAdd
function will be called to deal the every c-dimension for the
matrix MP. The algorithm is followed:

Figure 4. Host function and device kernel for matrix GMM method

In fact, the logSum for the mix probability is a highly
parallel implementation by the general parallel case,
however, we must consider the variable Gaussian mix num.
So we use the loop operation which loses part of effective.

IV. EXPERIMENTS

We have several experiments for GMM computations
speed between GPU and CPU. The feature of speech is 39-
dimension, including The basic 12 MFCCs, the energy, the
corresponding first and second derivatives. The configure of
machine is the Intel(R) Xeon(R) X5650 CPU and NVIDIA
Tesla C2050 GPU with the Windows Server 2008 OS.

At first, we have an small test for 12 frames and 5000
same states at a time, the probability computation of these
states will be executed for 10 times. The comparison time
shows in the Tab. 1.

Tab.1 displays part of problems. Because of the multi-
times same data implementations, the cache of CPU and
GPU will have a great effect on the speed. So, Tab. 1 just
show the GPU is more fast than CPU, but the speed is not
precise.

TABLE I. BASIC SPEED TEST

Cost time Speedup
IPP 15ms base

//Host code:
cublasSgemm (Model,Obv,MixProb);
dim3 block(256)
dim3 grid((stateNum + 255)/256);
LogAddKernel<<<grid,block>>>(MixProb, stateNum,
firstMixIndex, mixNumArray, outProb);

//Device code:
stateIndex←blockIdx.x * blockDim.x + threadIdx.x;
x←threadIdx.x;
firstMixLoc ← firstMixIndex[x];
mixNum← mixNumArray[x];
p ← MixProb[firstMixLoc];
for i=2:mixNum
 p = logAdd(prob, MixProb[i + firstMixLoc]);
outProb[stateIndex]=p;

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1021

GPU(Reduction) 3.92ms 3.8×
GPU(Matrix) 1.97ms 7.6×

Then, we have another experiment for a 181 frames
speech feature file and 5786 states GMM model. The GPU
will output the probability of 12 frames and 5786 states by
matrix multiplication at a time, meanwhile the CPU only
calculates a states and 12 frames once and then make double
loops. Also, we have the single frame experiments.

TABLE II. SPEED COMPARISON EXPERIMENT

 Cost time Speedup
IPP(Single frame) 20.5second base
GPU(Single frame) 2.77second 7.4×
IPP(12-frame) 2.38second base
GPU(12-frame) 0.205second 11.6×

Because of the multi-frame and multi-state, the delay of
different warp for GPU was masked. So 12-frame
computation could have a more speedup than the single.

V. CONCLUSION AND FUTURE WORK

Tab.2 show the GPU have 11.6× speedup. But we ignore
the fact that the CPU could implement the beam pruning.
After the pruning operation, only one filth states need to
evaluate the probability according to the other decoder
experiments. However, the GPU kernel function is very hard
to prune. Despite the fact, the GPU also have a 2× speedup
than IPP.

In fact, there is another method to calculate the acoustic
model: using the artificial neural network (ANN) to replace
the Gaussian Mixture Model. [5, 6] shows the deep belief
networks have a better recognition accuracy. Besides, [6]
displays the ANN training will have a 30 times speedup on
GPU than the CPU. So the acoustic model of neural network
is a tendency of speech recognition.

On the other hand, [19-21] give the potential speed for
the decoder on GPU. The decoder on GPU will become a
tendency to client-service system on speech recognition in
order to get a quicker response. Combining with ANN
acoustic model, the decoder will have a more fast speed. If
there is a great enhancement in decoding, the speech
recognition of actual time will likely come true.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (Nos. 10925419, 90920302,
61072124, 11074275, 11161140319, 91120001) and the
Strategic Priority Research Program of the Chinese Academy
of Sciences (Grant Nos. XDA06030100, XDA06030500).

REFERENCES
[1] K. F. LEE, "ON LARGE-VOCABULARY SPEAKER-INDEPENDENT

CONTINUOUS SPEECH RECOGNITION," SPEECH COMMUNICATION, VOL.
7, PP. 375-379, 1988.

[2] L. R. RABINER, "A TUTORIAL ON HIDDEN MARKOV MODELS AND

SELECTED APPLICATIONS IN SPEECH RECOGNITION," PROCEEDINGS OF
THE IEEE, VOL. 77, PP. 257-286, 1989.

[3] D. POVEY, "DISCRIMINATIVE TRAINING FOR LARGE VOCABULARY

SPEECH RECOGNITION," CAMBRIDGE, UK: CAMBRIDGE UNIVERSITY,
2004.

[4] D. POVEY AND P. C. WOODLAND, "MINIMUM PHONE ERROR AND I-
SMOOTHING FOR IMPROVED DISCRIMINATIVE TRAINING," 2002, PP. I-
105-I-108.

[5] A. MOHAMED, G. DAHL, AND G. HINTON, "ACOUSTIC MODELING

USING DEEP BELIEF NETWORKS," AUDIO, SPEECH, AND LANGUAGE
PROCESSING, IEEE TRANSACTIONS ON, PP. 1-1, 2010.

[6] G. E. DAHL, D. YU, L. DENG, AND A. ACERO, "CONTEXT-DEPENDENT

PRE-TRAINED DEEP NEURAL NETWORKS FOR LARGE-VOCABULARY

SPEECH RECOGNITION," AUDIO, SPEECH, AND LANGUAGE PROCESSING,
IEEE TRANSACTIONS ON, VOL. 20, PP. 30-42, 2012.

[7] G. E. HINTON, S. OSINDERO, AND Y. W. TEH, "A FAST LEARNING
ALGORITHM FOR DEEP BELIEF NETS," NEURAL COMPUTATION, VOL. 18,
PP. 1527-1554, 2006.

[8] S. YOUNG, "A REVIEW OF LARGE VOCABULARY CONTINUOUS SPEECH

RECOGNITION," SIGNAL PROCESSING MAGAZINE, IEEE, VOL. 13, P. 45,
1996.

[9] D. MOORE, J. DINES, M. DOSS, J. VEPA, O. CHENG, AND T. HAIN,
"JUICER: A WEIGHTED FINITE-STATE TRANSDUCER SPEECH DECODER,"
MACHINE LEARNING FOR MULTIMODAL INTERACTION, PP. 285-296, 2006.

[10] M. MOHRI, F. PEREIRA, AND M. RILEY, "SPEECH RECOGNITION WITH

WEIGHTED FINITE-STATE TRANSDUCERS," HANDBOOK ON SPEECH
PROCESSING AND SPEECH COMMUNICATION, 2008.

[11] M. MOHRI, F. PEREIRA, AND M. RILEY, "WEIGHTED FINITE-STATE

TRANSDUCERS IN SPEECH RECOGNITION," COMPUTER SPEECH &
LANGUAGE, VOL. 16, PP. 69-88, 2002.

[12] S. HONG, S. KYUN KIM, T. OGUNTEBI, AND K. OLUKOTUN,
"ACCELERATING CUDA GRAPH ALGORITHMS AT MAXIMUM WARP,"
SIGPLAN NOTICES, VOL. 46, P. 267, 2011.

[13] P. HARISH AND P. NARAYANAN, "ACCELERATING LARGE GRAPH

ALGORITHMS ON THE GPU USING CUDA," HIGH PERFORMANCE
COMPUTING–HIPC 2007, PP. 197-208, 2007.

[14] S. HONG, T. OGUNTEBI, AND K. OLUKOTUN, "EFFICIENT PARALLEL

GRAPH EXPLORATION ON MULTI-CORE CPU AND GPU," IN PARALLEL

ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2011, PP. 78-
88.

[15] P. CARDINAL, P. DUMOUCHEL, G. BOULIANNE, AND M. COMEAU,
"GPU ACCELERATED ACOUSTIC LIKELIHOOD COMPUTATIONS," IN
INTERSPEECH, 2008.

[16] J. VANEK, J. TRMAL, J. V. PSUTKA, AND J. PSUTKA, "OPTIMIZED

ACOUSTIC LIKELIHOODS COMPUTATION FOR NVIDIA AND ATI/AMD
GRAPHICS PROCESSORS," AUDIO, SPEECH, AND LANGUAGE
PROCESSING, IEEE TRANSACTIONS ON, VOL. 20, PP. 1818-1828, 2012.

[17] NVIDIA. (2012). CUDA PROGRAMMING GUIDE. AVAILABLE:
HTTP://DEVELOPER.DOWNLOAD.NVIDIA.COM/COMPUTE/DEVZONE/DO
CS/HTML/C/DOC/CUDA_C_PROGRAMMING_GUIDE.PDF

[18] NVIDIA. (2012). CUDA TOOLKIT. AVAILABLE:
HTTP://DEVELOPER.NVIDIA.COM/CUDA/NVIDIA-GPU-COMPUTING-
DOCUMENTATION

[19] J. CHONG, Y. YI, A. FARIA, N. SATISH, AND K. KEUTZER, "DATA-
PARALLEL LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION

ON GRAPHICS PROCESSORS," IN PROCEEDINGS OF THE 1ST ANNUAL

WORKSHOP ON EMERGING APPLICATIONS AND MANY CORE
ARCHITECTURE (EAMA), 2008, PP. 23-35.

[20] J. CHONG, E. GONINA, AND K. KEUTZER, "EFFICIENT AUTOMATIC

SPEECH RECOGNITION ON THE GPU," CHAPTER IN GPU COMPUTING
GEMS EMERALD EDITION, MORGAN KAUFMANN, 2011.

[21] J. CHONG, E. GONINA, Y. YI, AND K. KEUTZER, "A FULLY DATA

PARALLEL WFST-BASED LARGE VOCABULARY CONTINUOUS SPEECH
RECOGNITION ON A GRAPHICS PROCESSING UNIT," PRESENTED AT THE
INTERSPEECH, 2009.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1022

