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Abstract—Acoustic likelihood computations is one of the most 
computationally intensive part in the large vocabulary 
continuous speech recognition (LVCSR). In this paper, we give 
an introduction of accelerating acoustic likelihood 
computations for graphical processing units(GPUs). According 
to the optimal method, we achieve 11×  speedup on the 
acoustic probability evaluation.  
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I.  INTRODUCTION 

After decades of research, the performance of automatic 
speech recognition (ASR) systems in real usage scenarios 
lags behind human level performance. The challenges 
involve speed and accuracy. A lot of researchers use some 
notable advances and new math or physical models in 
training. In the field of acoustic model, the Hidden Markov 
Model was be used[1, 2] and it had a great improvement on 
the speech recognition. Then, minimum phone error (MPE) 
[3, 4] were applied to the training of acoustic model. 
Recently, deep belief network (DBN) [5-7] was successfully 
introduced into the acoustic model and it shows the obvious 
performance of decreasing the phone error comparing with 
the GMM. 

In the field of decoder[8] speed for LVCSR, a major  
achievement is the architecture of weighted finite-state 
transducers (WFST)[9-11]. WFST have an improvement on 
the speed than the tree-decoder. 

Because of the development of hardware, a lot of 
researchers pay attention to the GPUs. Base on the 
architecture of multi-core and Single Instruction Multiple 
Data (SIMD), the GPU achieves an great speed up in the 
graph algorithm[12-14]. So, it will be a tendency to use GPU 
in the intensive computation, like speech recognition. 

This paper is organized as follow. Section II gives an 
introduction to speech recognition and acoustic model. 
Section III shows the details of accelerate the GMM 
probability computations, including the basic principle, 
parallel reduction and matrix multiplication. Section IV gives 
the experiment results. Concluding remarks and future 
directions are reported in Section V.  

II. SPEECH RECOGNITION AND ACOUSTIC MODEL 

Speech recognition is the translation of spoken words 
into text. For a simple isolated word recognition, each 
spoken word be represented by a sequence of speech vectors 
or  observations O, defined as O = o1,o2,…,oT, where ot is the 

speech vector observed at time t. The isolated word 
recognition problem can be regarded as that of computing  
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Where wi is the i’th vocabulary word. The probability can be 
computed by using Bayes’ rule gives 
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P(O|wi) is the acoustic model which means a match 
between an input feature and an element of a database of 
known phones. In general, the acoustic model is evaluated by 
Gaussian Mixture Model-Hidden Markov Model (GMM-
HMM). The GMM observation probability is a part of 
acoustic model. In this paper, we only consider the GMM 
and the HMM state transition probabilities are ignored. 

The acoustic likelihood for a GMM is defined as: 
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is the probability that distribution j generates 

the d-dimensional observation vector to


at time t, Cj is the 

number of Gaussians in the distribution j, αjc is the weight 
of Gaussian c in distribution j, μjc and Σjc are the mean 
vector and the covariance matrix of Gaussian c in 
distribution j.  

Generally, the GMM probability can be quickened by 
Intel® Integrated Performance Primitives(IPP). By the 
Streaming SIMD Extensions (SSE), IPP can be only cost one 
fifth time than the normal loop instructions (by our 
experience). 

The observation probability is one of the most 
computationally intensive phase. In the ASR system, it will 
cost 50%-70% computation time and almost becomes the 
bottleneck of decoder. In fact, just the active states’ 
probability need to be calculated and we can use the beam 
pruning to decrease the computations. 

There are plenty of methods to decrease the probability 
evaluation time[7, 15, 16]. In this paper, we use the GPUs 
and parallel reduction algorithm. Because of  the multi-core 
and SIMD structure[17], more Arithmetic Logic Unit (ALU) 
and less Control Unit than CPU, GPU can solve more dense 
and high parallelism task. 
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III. ACCELERATE GMM LIKELIHOOD 

COMPUTATIONS ON GPU 

According to Equation GMM probability, the natural 
logarithm likelihood of one Gaussian can be expressed as: 
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The first three terms are constant for a specific-GMM can be pre-computed. Denoting this term by hjc, it is: 
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For the other two terms, we can re-denote mean and  
covariance: 
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where 1−Σ jc  is the diagonal covariance matrix. The 

likelihood for a single Gaussian can be expressed as: 
2')( tjctjcjctjc oVoUhob
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This equation means the computation can be expressed 
by a dot-product: 
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Then the GMM probability will be expressed: 
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Because of the structure of GPU, it will be fit for the 
dot-multiply. The final logAdd operation can be finished by 
basic parallel reduction algorithm. 

A. Parallel Reduction  

Based on the above description, we can store the GMM 
model as followed: 

 
where n is the dimensional of observation vector and the mix 
number of Gaussian is c. Similarly, the observation vector 
will be stored like this: 

 
Assumed the warp num of GPU is 32 (the num of one 

SIMD group, which means 32 threads will be run for one 
instruction synchronous) and a block contains 256 threads. 
Besides that, the GMM contains STATENUM states, the 
num of Gaussians is 16 and the frame num is FRAMENUM 
for once processing. We will get the follow algorithm. The 

CPU function likes Fig. 1, then the GPU device kernel 
function likes Fig. 2. The GPU code has two part: host 
function and device kernel function. Host function will run 
on CPU and device function will run on GPU device. 

 
Figure 1.  Reduction algorithm for host. 

 
Figure 2.  Reduction kernel algorithm for GPU device 

A block of a GPU will output the probability of a state for a 
frame and a grid will get FRAMENUM frames probability 
for STATENUM states. At first, the kernel will get the dot-
multiply of model and observation, then loop accumulation 
until the dimension less than 256. Secondly, the kernel will 
run the parallel reduction for addition. Finally, the logAdd 
function will be called when the dimension equal the mix 
num of Gaussian-16.  

The kernel has a problem of modifying. When the num of 
Gaussian is not 16, like 32 or 128, the code must be revised. 
When it is not the power of two, it will have more troubles. 

__shared__ data[1024]; 
stateIndex←blockIdx.x; 
frameIndex←blockIdx.y; 
modelStride←(dimObv * 2 + 1) * dimMixGaussian; 
baseModel←stateIndex * modelStride; 
baseObv ←frameIndex * modelStride; 
baseOutProb ← frameIndex * stateNum; 
i←threadIdx.x;   x←threadIdx.x; 
data[i] ←0; 
while(i < modelStride) 
{     

data[x] += model[baseModel + i] *               
 obv[baseObv + i]; 

i += 256;   
} 
__syncthreads(); 
if( x < 128 ) then 
{  data[x] += data[x+128]; __syncthreads();} 
if(x < 64) then 
{  data[x] += data[x+64]; __syncthreads(); } 
if(x < 32 ) then 
{ 

data[x] += data[x+32]; 
data[x] += data[x+16]; 
data[x] ← logAdd(data[x],data[x+8]); 
data[x] ← logAdd(data[x],data[x+4]); 
data[x] ← logAdd(data[x],data[x+2]); 
data[x] ← logAdd(data[x],data[x+1]); 

} 
if(0 == x) then 

outProb[baseOut + x] ← data[0];

dim3 grid(STATENUM,FRAMENUM); 
dim3 block(256); 
ReducationKernel<<<grid,block,1024>>>(model, 
stateNum, dimMixGaussian, obv, dimObv, outProb) 
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In the algorithm of Fig. 2, the parallel reduction algorithm 
is used. The reduction can decrease the complexity of o(n) to 
o(log2n). It is very common for multi-core computation. The 
basic principle is following: 

 
Figure 3.  Parallel reduction algorithm 

B. Matrix Multiplication  

Because of the extend limit of the previous idea, we can 
change the  store pattern of model and observation. Besides 
that, we will make most use of matrix multiply 
implementation [18]. Always, the basic matrix multiply 
library will effectively use the computation of process than 
the kernels by ourselves. Moreover, the matrix multiplication 
will be fit for the volatile mix num of Gaussian.  

In our designer, the i-th state of the model will be saved 
like that Mj= 

 
It is a c rows and (2n+1) cols matrix which c is the mix 

num of Gaussian and n is the dimension of observation. So, 
the j-th frame observation is saved as Oi=: 

 
For a state, the probability of every Gaussian MP(c,i,j) is 

result of the matrix M(i) multiplying the matrix O(j). After 
the matrix multiply, the probability of a state P(i,j) is the 
logAdd of every dimension MP(c,i,j).  
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where MP(c, i, j) is the c-th mix probability of j-th frame for 
the i-th state and P(i, j) is the j-th frame probability for the i-
th state. 

When we deal with multi-state and multi-frame, the store 
pattern is : 

 
 Left is the model and right is the multi-frame observation. 
The model is a matrix of c* StateNum rows and (2n+1) cols. 
The observation is a matrix of frameNum rows and (2n+1) 
cols. The probability of every mix Gaussian MP is matrix M 
multiply the transposition of matrix O. Finally, the logAdd 
function will be called to deal the every c-dimension for the 
matrix MP. The algorithm is followed: 

 
Figure 4.  Host function and device kernel for matrix GMM method 

In fact, the logSum for the mix probability is a highly 
parallel implementation by the general parallel case, 
however, we must consider the variable Gaussian mix num. 
So we use the loop operation which loses part of effective.  

IV. EXPERIMENTS 

We have several experiments for GMM computations 
speed between GPU and CPU. The feature of speech is 39-
dimension, including The basic 12 MFCCs, the energy, the 
corresponding first and second derivatives. The configure of 
machine is the Intel(R) Xeon(R) X5650 CPU and NVIDIA 
Tesla C2050 GPU with the Windows Server 2008 OS. 

At first, we have an small test for 12 frames and 5000 
same states at a time, the probability computation of these 
states will be executed for 10 times. The comparison time 
shows in the Tab. 1. 

Tab.1 displays part of problems. Because of the multi-
times same data implementations, the cache of CPU and 
GPU will have a great effect on the speed. So, Tab. 1 just 
show the GPU is more fast than CPU, but the speed is not 
precise. 

TABLE I.  BASIC SPEED TEST 

Cost time Speedup
IPP 15ms base 

//Host code: 
cublasSgemm (Model,Obv,MixProb); 
dim3 block(256) 
dim3 grid( (stateNum + 255)/256); 
LogAddKernel<<<grid,block>>>(MixProb, stateNum, 
firstMixIndex, mixNumArray, outProb); 
 
//Device code: 
stateIndex←blockIdx.x * blockDim.x + threadIdx.x; 
x←threadIdx.x; 
firstMixLoc ← firstMixIndex[x]; 
mixNum← mixNumArray[x]; 
p ← MixProb[firstMixLoc]; 
for i=2:mixNum  
     p = logAdd(prob, MixProb[i + firstMixLoc ]); 
outProb[stateIndex]=p; 
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GPU(Reduction) 3.92ms 3.8× 
GPU(Matrix) 1.97ms 7.6× 

Then, we have another experiment for a 181 frames 
speech feature file and 5786 states GMM model. The GPU 
will output the probability of 12 frames and 5786 states by 
matrix multiplication at a time, meanwhile the CPU only  
calculates a states and 12 frames once and then make double  
loops. Also, we have the single frame experiments. 

TABLE II.   SPEED COMPARISON EXPERIMENT 

 Cost time Speedup
IPP(Single frame) 20.5second base 
GPU(Single frame) 2.77second 7.4× 
IPP(12-frame) 2.38second base 
GPU(12-frame) 0.205second 11.6× 

Because of the multi-frame and multi-state, the delay of 
different warp for GPU was masked. So 12-frame 
computation could have a more speedup than the single. 

V. CONCLUSION AND FUTURE WORK 

Tab.2 show the GPU have 11.6× speedup. But we ignore 
the fact that the CPU could implement the beam pruning. 
After the pruning operation, only one filth states need to 
evaluate the probability according to the other decoder 
experiments. However, the GPU kernel function is very hard 
to prune. Despite the fact, the GPU also have a 2× speedup 
than IPP. 

In fact, there is another method to calculate the acoustic 
model: using the artificial neural network (ANN) to replace 
the Gaussian Mixture Model. [5, 6] shows the deep belief 
networks have a better recognition  accuracy. Besides, [6] 
displays the ANN training will have a 30 times speedup on 
GPU than the CPU. So the acoustic model of neural network 
is a tendency of speech recognition. 

On the other hand, [19-21] give the potential speed for 
the decoder on GPU. The decoder on GPU will become a 
tendency to client-service system on speech recognition in 
order to get a quicker response. Combining with ANN 
acoustic model, the decoder will have a more fast speed. If 
there is a great enhancement in decoding, the speech 
recognition of actual time will likely come true. 
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