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Abstract—Traditional Viterbi algorithm cannot be generally 
effective. Regarding the hidden state estimates of HMM as a 
Bayes filtering problem, the Sequential Importance Sampling 
with Resampling algorithm could get an approximate of its 
Bayes estimates. Its performance reached or even exceeds the 
Viterbi algorithm while lower dependence on the model, 
having a wider range of adaptation. 
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I.  INTRODUCTION  

HMM (Hidden Markov Models), which were brought 
forward by Baum and others in the late sixties of the 
twentieth century, are the most successful statistical 
modeling ideas that have came up in the last forty years. It 
has been widely used in many different areas such as speech 
recognition, anomaly detection and computational biology. 
The use of hidden (or unobservable) status  makes the model 
generic enough to handle a variety of complex real-world 
time series, while the relatively simple prior dependence 
structure still allows for the use of efficient computational 
procedures. 

Theoretically speaking, HMM need address three issues: 
identification problems, hidden state estimation and 
parameter estimation problems. They are issues form the 
theoretical basis of HMM, and are often inseparable in 
practice. Hidden state estimates of HMM is that to get the 
best estimates of the hidden state based on observations and 
model parameters. The classical algorithm is Viterbi 
algorithm, besides, the maximum a posteriori based 
algorithm, the Bayesian estimates based algorithm, the 
filtering and interpolation based algorithm Etc. are also 
commonly used. However, the form of HMMs is large 
difference in different application fields, and the algorithms 
may be quite different in the form of expression. Reference 
[1] use transition kernel to define a HMM which can contain 
most applications of HMM, called HMM with transition 
kernel, if its transition kernel has a density function, we treat 
it as HMM with transition density function.  

This dissertation take full advantage of the special 
probability structure of HMM, derived the analytical 
expression of the MAP estimation of hidden state of HMM 
with transition density function. When the value space of 
hidden state is limited or the HMM is equivalent to a linear 
state space model, we are able to get the MAP estimation 
analytically. But in most cases, we couldn’t get the MAP 
estimation analytically, or the complexity of calculation is 
too high. Therefore, we regard hidden state estimation 

problems of HMM as Bayes filtering problems, and 
Sequential Importance Sampling with Resampling will be 
used to obtain approximations of its Bayes Solution. 

II. HMM WITH TRANSITION DENSITY FUNCTION 

Let ( , )  and ( , )   be two measurable spaces. Q is a 
Markov kernel on ( , )  , G is a transition kernel 
from( , )  to ( , )  , ν is a probability measure on( , )  ,T is a 
Markov transition kernel contented formula(1). Then The 
Markov chain { } 0

( , )k k k
X Y

≥  with transition kernel T  and initial 
distribution Gν ⊗ is called a hidden Markov model, simply 
referred to as HMM. 

[( , ), ] ( , ) ( , )
D

T x y C Q x dx G x dy′ ′ ′=  , ( , ) ,x y C∈ × ∈ ⊗          (1) 
The integration region in formula (1) is:  

{ }{ }( , ) : ( , ) 0D C x y G x y= ≠ . 
If there exists a probability measure μ  on ( , )  , a 

probability measure λ on ( , )  , such that μ λ  and 
x∀ ∈ , ( , )G x μ⋅  , ( , )Q x λ⋅  , then the transition kernel T  must 

have a density function and there must exists transition 
density function ( , )q x ⋅ and ( , )g x ⋅  that  A∀ ∈ , B∀ ∈ , 

( , ) ( , ) ( )
A

Q x A q x x dxλ′ ′=  , ( , ) ( , ) ( )
B

G x B g x y dyμ=  ,and the transition 
kernelT can be written as:  

[( , ), ] ( , ) ( , ) ( ( , ))
D

T x y C q x x g x y d x yλ μ′ ′ ′ ′ ′= ⊗                  (2) 

In formula (2) { }( , ) , , ( , ) : ( , ) 0x y C D C x y g x y∈ × ∈ ⊗ = ≠    .  
[( , ), ( , )] ( , ) ( , )t x y x y q x x g y y′ ′ ′ ′  is called the transition 

density function of T . If the transition kernel of a HMM has 
transition density function, said the HMM has transition 
density function. This dissertation only discusses HMMs 
which has a transition density function, and will no longer 
special instructions below.  

III. MAP ESTIMATION OF HMM HIDDEN STATE 

The core of make judgments about HMM hidden state is 
obtain the joint conditional distribution of it at the condition 
of given observations. 0 k l∀ ≤ ≤ and 0n > , definition 

: | 0:( , )k l n nyφ ⋅ as the conditional distribution of :k lX  given 

{ }0: 0:n nY y= . For HMMs with transition density function, 

: | 0:( , )k l n nyφ ⋅ is the transition kernel from 1n+ to 1l k− + , and it 

must has a transition density function : | : 0:( | )k l n k l nx yϕ . 
Accordingly, we get the maximum a posteriori estimation of 
a HMM hidden state: 

Single point optimal:  
| 0:ˆ arg max ( | )

k

k k n k n
x

x x yϕ= , 0, ,k n=             (3) 

Path optimal:  
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0:

0: : | 0: 0:ˆ arg max ( | )
n

n o n n n n
x

x x yϕ=                         (4) 

The commonly used Viterbi algorithm is based on the 
path optimal principles of formula (4). When is limited or 
the HMM is equivalent to a linear state-space model, it is 
easy to get the MAP estimation of formula (3) and (4) 
analytically. But normally, HMM is equivalent to a non-
linear and non-Gaussian state space model, the analytical 
solution of formula (3) and (4) is not able to achieve. One 
solution is to adopt the approximate calculation; another 
solution is to abandon the MAP criterion. This dissertation 
chooses the second, use the SISR algorithm to get the hidden 
state’s Bayes estimate of HMM. 

IV. SISR BASED SINGLE POINT OPTIMA ESTIMATES OF 

HMM HIDDEN STATES 

According to the definition of HMM with transition 
density function, likelihood of the observation { }0: 0:n nY y= is: 

1
0: 0 0 0 0 1 0:1

( ) ( ) ( , ) ( , ) ( , ) ( )
n n

n i i i i ni
L y x g x y q x x g x y dxπ λ ⊗ +

−=
= ∏    (5) 

In formula (5), 1nλ⊗ +  is the product measure of ( 1)n + th 
λ . 

According to Theorem 3.1 of literature [2], if the 
observations 0: 0:n nY y= make 0:( ) 0nL y > , then 1( )n

bf +∀ ∈  , 
1 1

: | 0: 0: 0: 0: 0 0 0 0 1 0:1
( , ( )) ( ) ( ) ( ) ( , ) ( , ) ( , ) ( )

n n
onn n n n n i i i i ni

y f x L y f x x g x y q x x g x y dxφ π λ− ⊗ +
−=

= ∏   

The corresponding density function is: 
1

: | 0: 0: 0: 0 0 0 0 11
( | ) ( ) ( ) ( , ) ( , ) ( , )

n

o n n n n n i i i ii
x y L y x g x y q x x g x yϕ π−

−=
= ∏   (6) 

Follow formula (6), 

: | 0: 0: 0 0 0 0 11
( | ) ( ) ( , ) ( , ) ( , )

n

o n n n n i i i ii
x y x g x y q x x g x yϕ π −=

∝ ∏ , 
1

0|0 0 0 0 0 0 0 0 0 0 0 0( | ) ( ) ( ) ( , ) ( ) ( , )x y L y x g x y x g x yϕ π π−= ∝ . 
The first step of SISR is to obtain a number of random 

samples of the posterior density function : | 0: 0:( | )o n n n nx yϕ . 
Foremost, you need select a proposal distribution, it’s 
distribution density 0: 0:( | )n nx yρ has the following form: 

0: 0: 1 0: 1 0: 1 0 0 11
( | ) ( | , ) ( | ) ( | ) ( | , )

n

n n n n n n n k k kk
x y x y x x y x y x y xρ ρ ρ ρ ρ− − − −=

= = ∏  

If the ( )
0: 1
i
nX −  sampling from 0: 1 0: 1( | )n nx yρ − − and ( )i

nX  
from ( )

1( | , )i
n n nx y Xρ − , the ( ) ( ) ( )

0: 0: 1( , )i i i
n n nX X X−=  is just the sample of 

0: 0:( | )n nx yρ . According to formula (6), 

0: : | 0: 0: 0 | 0 0 11
( ) ( | ) ( ) ( | ) ( , ) ( , )

n

n o n n n n o o k k k kk
L y x y L y x y q x x g x yϕ ϕ −=

= ∏ . 

Therefore, the weight of the sample ( )
0:
i
nX from 

0: 0:( | )n nx yρ is: 
( ) ( ) ( ) ( )

0: : | 0: 0:( ) ( ) 1
1( ) ( ) ( )

: | 0: 0: 1

( ) ( | ) ( , ) ( , )

( | ) ( | , )

i i i i
n o n n n ni i n n n n

n ni i i
o n n n n n n n

L y X y q X X g X y
w w

X y X y X

ϕ
ρ ρ

−
−

−

= . 

Using the independent and identically distributed 
samples ( )

0: , 1, ,i
nX i N=  of 0: 0:( | )n nx yρ , we can estimate the 

conditional density : | 0: 0:( | )o n n n nx yϕ , thereby given estimate 
of the amount of various posteriori. So, the key is finding a 
suitable proposal distribution and sampling from it. 

Suppose our goal is : | 0: 0:
ˆ ( | )o n n n nx yϕ , the optimal proposal 

distribution shall be that the weight variance of  moment k is 
minimum. 

 At the condition of know ( )
0: 1
i
kX − and 0: 0:k kY y= , the 

variance of weight ( )i
kω is: 

( ) ( )
1

( )

( | , )i i
kk k

i
kX y X

Var
ρ

ω
−

 

( ) ( ) ( ) ( ) ( )
1 1

2 2( ) ( )
2( ) 1 1

1 ( ) ( )( | , ) ( | , )
1 1

( , ) ( , ) ( , ) ( , )

( | , ) ( | , )
i i i i

k kk k k k

i i
i k k k k k k k k

k i iX y X X y X
k k k k k k

q X x g x y q X x g x y
E E

x y X x y Xρ ρ
ω

ρ ρ− −

− −
−

− −

    
 = −   
     

    

( ) ( ) ( )
2( )

22 1( ) ( )
1 1( )

1

( , ) ( , )
( ) ( , ) ( , ) ( )

( | , )

i
k k k ki i

k k k k k k ki
k k k

q X x g x y
dx q X x g x y dx

x y X
ω λ λ

ρ
−

− −
−

 
 = −
 
 
  . 

If 
( )

( ) 1
1 ( )

1

( , ) ( , )
( | , )

( , ) ( , ) ( )

i
i k k k k

k k k i
k k k k k

q X x g x y
x y X

q X x g x y dx
ρ

λ
−

−
−

=


, then  

( ) ( )
1

( )

( | , )
0i i

kk k

i
kX y X

Var
ρ

ω
−

= , so the optimal proposal distribution is: 

0 0 0|0 0 0 0 0 0 0( | ) ( | ) ( ) ( , )x y x y x g x yρ ϕ π= ∝ , 
( )

( ) ( )1
1 1( )

1

( , ) ( , )
( | , ) ( , ) ( , )

( , ) ( , ) ( )

i
i ik k k k

k k k k k k ki
k k k k k

q X x g x y
x y X q X x g x y

q X x g x y dx
ρ

λ
−

− −
−

= ∝


 

The weights 
( )
0 0 0 0 0 0( ) ( , )i x g x y dxω π=  ,
( ) ( ) ( )

1 1( , ) ( , ) ( )i i i
k k k k k k kq X x g x y dxω ω λ− −=  . 

However, in the implementation of the process of the SIS 
algorithm, with the increase of k , weights of the vast 
majority of particles will tend to 0. These particles are almost 
zero contribution to the estimator. To overcome this 
degradation phenomenon, Gordon proposed resampling 
technology, to reduce the particles with small weight and 
copy the particles with large weight. 

Define 
1

( ) 2

1
( )

N i
eff ki

N W
−

=
 =   , when (1) ( ) 1N

k kW W
N

= = = , effN  

reaches its maximum N  when one of (1) , ,kW   ( )N
kW  equal to 1 

and others equal to 0, effN reaches its minimum 1. Therefore, 

effN can be used as the measure of valid samples. Given 
beforehand a threshold value thresN , if eff thresN N< , execute the 
re-sampling process. Summarized as Sequential Importance 
Sampling with resampling algorithm (SISR): 

 (i)  For 0k =  
Sampling 
Get independent samples ( )

0
iX , 1, ,i N=  from 0 0( | )x yρ  

Calculate the weights 
( ) ( )

( ) 0 0 0 0
0 ( )

0 0

( ) ( , )

( | )

i i
i

i

X g X y
w

X y

π
ρ

=
 
 , and the 

normalized weights 
( )

( ) 0
0 ( )

01

i
i

N i

i

w
W

w
=

=


 , 1, ,i N=  . 

Calculate
1

( ) 2
01

( )
N i

eff i
N W

−

=
 =    . 

Resampling 
If eff thresN N≥ , do not resampling, 

( ) ( )
0 0

i iW W=  , ( ) ( )
0 0
i iX X=  , 1, ,i N=  . 

Else, Get independent samples ( )
0 , 1, ,iI i N=   from 

{ }1, , N   makes  ( ) ( )
0 0( ) , 1, ,i lP I l W l N= = =  . 

set ( ) ( )
0 0

1
, 1, ,i iW w i N

N
= = =  , update the tracks as

( )
0( )

0

iIX , 

1, ,i N=  ． 
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(ii)  For 1, 2, ,k n=   
 
 
Sampling 
Get independent samples ( )i

kX from ( )
1( | , )i

k k kx y Xρ −  
calculate the weights  

( ) ( ) ( )
( ) ( ) 1

1 ( ) ( )
1

( , ) ( , )

( | , )

i i i
i i k k k k

k k i i
k k k

q X X g X y
w w

X y Xρ
−

−
−

=
 
 , 

and  the normalized weights 
( )

( )

( )

1

i
i k

k N i
ki

w
W

w
=

=


 , 1, ,i N=   

calculate 
1

( ) 2

1
( )

N i
eff ki

N W
−

=
 =    . 

Resampling 
When k n=  or eff thresN N≥ , update the tracks as 

( ) ( ) ( )
0: 0: 1( , )i i i

k k kX X X−=  , weights as ( ) ( )i i
k kW W=  ， 1, ,i N=   

Else, get independent samples ( ) , 1, ,i
kI i N=    from 

{ }1, , N  makes ( ) ( )( ) , 1, ,i l
k kP I l W l N= = =  . 

Update the tracks as
( ) ( )( ) ( )( )

0: 0: 1( , )
i i

k kI Ii
k k kX X X−=  , weights 

as ( ) ( ) 1
, 1, ,i i

k kW w i N
N

= = =  . 

SISR algorithm samples obtained estimates of the joint 
posterior density 

Use the samples ( )
0:
i
nX ， 1, ,i N=  of SISR algorithm, we 

obtained the estimates of : | 0: 0:( | )o n n n nx yϕ : 

( )
0:

( )
: | 0: 0: 0:1

ˆ ( | ) ( )i
n

N i
o n n n n n nXi

x y W xϕ δ
=

= . 

According to formula (6) 
| 0:

1
0: 0 0 0 0 1 0: 1 1:1

( | )

( ) ( ) ( , ) ( , ) ( , ) ( , )

k n k n

n n
n i i i i k k ni

x y

L y x g x y q x x g x y dx dx

ϕ

π λ− ⊗
− − +=

= ∏ 
 

1
| 0: 1| 1 0: 1

1 | 0:

( , )
( | ) ( | ) ( )

( , ) ( | ) ( )
k k

k k k k k n k n k

k k k k k k k

q x x
x y x y dx

q x x x y dx
ϕ ϕ λ

ϕ λ
+

+ + +
+

= ×  . 

Therefore, when k n< , the estimates of | 0:( | )k n k nx yϕ is: 

| 0:

1
| 0: 1| 1 0: 1

1 | 0:

ˆ ( | )

( , )
ˆ ˆ( | ) ( | ) ( )

ˆ( , ) ( | ) ( )

k n k n

k k
k k k k k n k n k

k k k k k k k

x y

q x x
x y x y dx

q x x x y dx

ϕ

ϕ ϕ λ
ϕ λ

+
+ + +

+

= × 
 

( )

( )
( ) ( ) 1

1| ( ) ( ) ( )
1 1 11

( , )
( )

( , )
i

k

jN N
i j k k

k k n kN Xl l j
i j k k kl

q x X
W W x

W q X X
δ+

+
= = +=

 
 =
 
 

 





   . 

Assume ( )

( )
| 0: |1

ˆ ( | ) ( )i
k

N i
k n k n k n kXi

x y W xϕ δ
=

=  ,                (7) 

Then ( ) ( )
|
i i

n n nW W= , 
( ) ( )

( ) ( ) ( ) 1
| 1| ( ) ( ) ( )

1 11

( , )

( , )

i jN
i i j k k

k n k k n N l l j
j k k kl

q X X
W W W

W q X X
+

+
= +=

= 


 
   .                     (8) 

Firstly, ( ) ( ) ( )
|
i i i

n n n nW W W= =  . For 1, ,0k n= −  , obtain the 

weight ( )
|
i

k nW  by formula (8) recursively; obtain the estimate 

of | 0:( | )( 0, , )k n k nx y k nϕ =  by formula (7). Then, we can 

get the estimates of HMM hidden state by formula (3).  
Written as algorithm is: 
 
 

SISR based single point optima estimates of HMM 
hidden states 

（1） obtain the estimates of | 0:( | )( 0, , )k n k nx y k nϕ =   
by SISR algorithm: 

( )

( )
| 0: |1

ˆ ( | ) ( )i
k

N i
k n k n k n kXi

x y W xϕ δ
=

=  . 

（2） obtain the estimates of hidden states: 

| 0:ˆ arg max ( | )
k

k k n k n
x

x x yϕ= ， 0, ,k n=  . 

V. SIMULATION TESTS AND CONCLUSIONS 

Generate a group of hidden status and corresponding 
observations with a length of 500 ( 499n = ) from a HMM 
whose { }1,2,3= ,  0 (0.1 0.8 0.1)π = ,  

2

2

( )1
( , ) exp

22
i

ii

i x
i i

xx

y
g x y

μ
σπσ

 − = − 
  

,  ( 3 0 3)μ = − , 

( 2 1 2)Σ = , 

0.2 0.7 0.1

0.1 0.8 0.1

0.1 0.7 0.2

Q =
 
 
  
 

. 

Assume Unknown the hidden states, need to get its 
estimation by the observations and model parameters. 

The single point optima estimations of ( 0, , )kX k n=   is 
shown below, 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

 

Figer 1  Single point optima estimations of hidden state 
There are 123 error estimates In figer1, where “ｏ” 

signify the real hidden states, “·”signify the single point 
optima estimations of formula (3). 

The Viterbi estimations of ( 0, , )kX k n=  is shown 
below: 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

 

Figer 2  Viterbi estimations of hidden state 
There are 39 error estimates In figer2, where “ｏ” signify 

the real hidden states, “·”signify the Viterbi estimations. 
The SISR based single point optima estimations of 
( 0, , )kX k n=   is shown below: 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1034



0 50 100 150 200 250 300 350 400 450 500
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Figer 3  SISR based single point optima estimations 
There are 38 error estimates In figer3, where “ｏ” signify 

the real hidden states, “·”signify the SISR based single 
point optima estimations. 

The results above showing, the introduction of SISR 
algorithm has greatly improved the accuracy of single point 
optima estimations, reached the level of the Viterbi 
algorithm. Despite the cost of the calculation and time, the 
SISR based algorithm does not set any condition of the 
model structure and has a wider range of applications. When 
Viterbi algorithm can not be achieved, or less demanding of 
time, the SISR based algorithm might be a good choice. 
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