
Keyword-Driven Testing Framework For Android Applications

Wu Zhongqian, Liu Shu, Li Jinzhe, Liao Zengzeng
School of Software

Harbin Institute of Technology
Harbin, China

{imzhongqian, lijinze909, liaozengzeng} @163.com
sliu@hit.edu.cn

Abstract—Automated testing of the mobile applications is just
getting started recently. Currently it is still in the discussion
and research stage. However, from the growth in the number
of mobile applications and logical complexity, and the crunch
of the product release cycle, the automated testing is on
demand. Compared with the rapid development of Android
application, the traditional manual testing methods are lag
behind. Due to the openness of Android and the variety of
devices, the manual testing is limited by many factors.
Especially in regression testing of iteration development the
manual testing is just inadequate. In order to solve such
problems as well as to improve the reusability of testing scripts,
this paper proposes an Android-based keyword-driven
automated testing framework. Based on Robotium and with
keyword-driven this testing framework separates testing logic,
testing scripts, and testing data in design. Tests can be done
only through modifying the control files. Meanwhile, testing
scripts are independent with testing examples. The test data
and business logic are being integrated in the form of test data
by designing reusable keyword library based on the Android
GUI testing. Thus, the design of testing can be simplified to be
the design of testing data table and minimize the manual
operations. Further, it can free the test engineers from the
tedious repetitive work, provide a more efficient and accurate
test software products, and improve the competitiveness of
products.

Keywords-keyword-driven; automated testing; test framework;
android GUI test

I. INTRODUCTION

The arrival of mobile internet era provides the
opportunity for the smart phone applications to develop by
leaps and bounds and make it the mainstream of today's
mobile applications market. While the phones bring
convenience to the users, software failures and problems also
increase. The importance of software quality is gradually
revealed. The losses will increase if software quality is not
improved with the growth of the system size, complexity and
importance. [1]

To improve the quality of mobile phone, the software
testing plays an important role. Adequate testing of the
software by the software developers and users to make sure
that it works properly and meets the requirement
specification. Statistics show that in a typical software
project, testing effort often accounts for more than 40% of
the total development workload. If the problem can be

detected early and resolved before release, the production
cost will be controlled more effectively. In fact, the cost of
fixing bugs after the release is 200-300 times as much as it
does in the testing phase [2]. So it is essential to improve the
efficiency of the software testing process.

To improve the efficiency of the test, automated testing
ideas and methods have been introduced. Practice has proved
that the software automation test technology has helped
improving the speed and efficiency of the software testing,
saving the cost of software testing and shortening product
release cycles. Meanwhile, automated testing technology has
completed the work that manual testing cannot achieve. For
example, the use of automated testing tools in the testing
activities can reduce part of the overhead, at the same time,
some testing activities are difficult to achieve and measured
manually; automated testing framework can improve the
efficiency of the test, quickly locate the functionality and
performance defects in all versions of the tested software.

Up to now, the test automation frameworks have evolved
into three generations. [3] Figure 1 shows evolution of Test
Automation. In the beginning, there was record and playback
script creation. In this, there were only stand-alone test
scripts. And then, came the Functional Decomposition. It
consists of reusable functional test modules. After that came
the data-driven testing. In this, test data is taken out of the
scripts. This makes the test data variation easy and similar
test cases can be created quickly. [4]

Today, keyword-driven testing is getting more and more
popular. The keyword-driven testing framework has better
reusability than others. And with the increasing amount of
testing and the accumulating of test code, its superiority is
even more obvious. [5] It is a technique that separates much
of the programming work from the actual test steps so that
the test steps can be developed earlier and can be maintained
with only minor updates. It consists of test scripts, keyword
library and data.

However, there isn’t a keyword-driven testing framework
can be used directly to the android GUI testing now. Android
GUI automation test framework has a vital role in
safeguarding the rich and mature for Android application.
Therefore, in order to narrow for the gap between theory and
practice, the article uses Robotium[6] in Android to
implement a practical, effective keyword-driven testing
framework, and validate its practicability and superiority in
the field of automated testing.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1096

Figure 1. Evolution of Test Automation[7].

II. KEYWORD-DRIVEN TESTING

A. Overview

Keyword-driven testing is a part of the test automation
discipline. It separates the programming work from the
actual test script so that the test scripts can be developed
without knowledge of programming. [8]

In keyword-driven testing, each keyword corresponds to
an individual testing action like a mouse click, selection of a
menu item, keystrokes, opening or closing a window or other
actions. A keyword-driven test is a sequence of operations,
in a keyword format, that simulate user actions on the tested
application. Basically, to perform any testing actions, testers
simply drag and drop the keyword that corresponds to the
desired operation or they can just record their actions and the
keyword-driven test is built for them.

While most automation solutions rely on dedicated
automation engineers that convert manual tests to automated
scripts and execute them, in Keyword-Driven Testing, test
automation only focuses on building and maintaining the
infrastructure. The same scripts, written by the testers and
other domain knowledge experts, are used for both manual
and automated tests. The testers themselves are also
responsible for execution and analysis.

As a result the test scripts can be developed earlier and
maintained with only minor updates, even when the
application or testing requires significant changes.

B. Keyword-Driven Architecture

Keyword-Driven framework (called AKDT as follow)
like any other framework has been built using certain
components to make it work the way it has been described. A
graphical presentation of the internal architecture is given by
Figure 2.

Keyword-Driven Testing can be divided into two main
layers. The Infrastructure Layer is comprised of Utility
Scripts and User Defined Functions. It is the engine that
receives inputs (keywords) and performs operations on the
tested application. The Logical Layer is used by testers and
other subject matter experts to build and execute test
automation scripts using pre-defined keywords.

Figure 2. AKDT internal Architecture[9]

Keyword-Driven Testing utilizes a dictionary that
provides the entire organization with a language for building
test automation scripts. Test automation is fully aligned with
the business processes by using this approach.

The implementation of this methodology is framework
dependent. This framework requires the development of
data tables and keywords, independent of the test automation
tool used to execute them and the test script code that
"drives" the application-under-test and the data. A graphical
presentation of the data tables is given by Figure 3.

Figure 3. Test data file

In a keyword-driven test, the functionality of the
application-under-test is documented in a table as well as in
step-by-step instructions for each test.

If we were to map out the actions we perform with the
mouse when we test our Android Calculator functions by
hand, we could create the following table. The "object"
column contains the name of the activity where we're
performing the mouse action. The "Keyword" column names
the type of control the mouse is clicking. And the
"Arguments" column names a specific control (1, 2, 3, 5, +, -,
and so on).

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1097

C. Advantages of AKDT

1) Keyword-Driven Tests are Easy to Create: The
testing engineer without knowledge of programming can
write the detailed test plan having desired inputs and
verification data in the form of simple & convenient
spreadsheets. They can create keyword-driven tests visually
by adding and deleting operations and edit them directly by
changing an operation’s parameters and position. However,
writing scripts requires knowledge of scripting languages
provided by the automated testing tool, whether it is
VBScript, Jscript or any other scripting language and
requires testers to know the application’s internal objects.

2) Create Automated Test Batches With Logic From
Keyword-Driven Tests: Keyword-driven tests allow you to
introduce logic into the organization of your automated tests
by building some simple decision into a keyword-driven test.
So improving test coverage by letting the testers create the
automated scripts, more tests are covered and
misinterpretation of the manual tests is avoided.

3) Create Automated Tests Earlier with Keyword-
Driven Testing: With keyword-driven testing, you can create
simple functional tests in the earlier stages of development,
testing the application, piece-by-piece, and improving your
automated testing success rate and do this without having to
learn a scripting language. In a word, it can save time by
combining the test automation and test documentation into a
single effort.

4) Easy to maintain: A single change in the application
under test will require only a single change in the
infrastructure. The advantages of automated tests are the
reusability and therefore, ease of maintenance of tests that
has been created at a high level of abstraction.

III. TECHNOLOGIES USED TO IMPLEMENT AKDT

A. Android Instrumentation testing framework

The Android core test environment is the Instrumentation
framework [10]. Android supports the instrumentation, which
extends the JUNIT TestCase class to provide functional test
of Android Activities. In this framework, the test procedure
can accurately control the application. By using the
instrumentation, developers can create a simulation system
object, control applications multiple life cycles, send UI
events to the application during execution, and check the
state of the program and so on, before the main program
starts. Instrumentation framework implements these
functions by running the tested app and testing program in
the same process. So we can monitor the interaction between
the testing system and the application easily. The working
principle of android testing framework is shown in Figure 4.

However, the instrumentation framework is too complex.
It requires the testers to know about java and android
programming. Meanwhile, writing test cases will burn off
more time and increase the cost of software testing. In
addition, the high coupling let test code need to be amended
once the application under test is modified or version updates.

Figure 4. The working principle of instrumentation testing framework

B. Robotium testing frameworks

Robotium is an android open source testing framework
and comes with a package of the android test class
Instrumentation. It finishes the interactive testing by using
Android’s instrumentationTestRunner class. Robotium is
mainly used to imitate the user scenario testing. By using
Robotium, we can easily write robust and effective
automated black box and White-box testing.

Robotium can span multiple activities to support
functional testing, system testing and acceptance testing. In
addition, it also supports Activities, Dialogs, Toasts, Menus,
Context Menus control test.

The Open source Robotium framework is convenient to
be modified and extend according to requirement. However,
Robotium is just a package of instrumentation and more
functional expansion is support. For example, it can’t reach
the full support of custom View.

IV. THE IMPLEMENTATION OF AKDT

A. AKDT’s Architecture Design

From the above principle and the requirement, the
keyword-driven automated test framework on the Android is
shown in figure 5.

The framework mainly divided into five modules: data
handle (including test configuration data, business test data),
keyword handle, component manager, driver module, result
analysis module.

Figure 5. AKDT’s Architecture

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1098

The configuration file is used to preserve the information
they need for automatically test running. This file includes
application running environment, tested application path,
meta-data file path, testing results saved path, etc. Business
test data file, including all kinds of business data, is needed
in the test execution process, such as test cases coding, and
corresponding operation and input/output data value, etc.
Component object data is the collection of tested application
control objects, such as a button, a list, a text input box or
even a custom controls of Android application. Each object
is unique and is identified by ID. Data is read by data handle
module from the data files, and according to the need of next
level modules, converted to the corresponding format for
convenient reading.

The driver module is mainly used for processing different
data file. It gets formative data from the data handle module
and drives the keyword handle module to test components.
Then driver module get test results from keyword handle
module and deliver to result analysis module. The key word
processor main processing specific operation keyword,
including control operation (such as click, long press, drag,
jump, etc.) and verify operation (such as verification whether
is correct jumped and input correctly verified, etc.). It is the
core of the test script code that decides the steps of each
operation, the next called operation and so on. Each step
needs two corresponding key data: input operation and
output operation. The keyword handle module gets the
needed information from the control processing module. This
module realizes the keyword operation by using Robotium to
call a series of control object, such as an operation
ENTERTEXT of editing the TextView, which includes two
types of operation (text box focus acquisition and text box
input). Results analysis module uses the improved
TestRunner to produce test analysis report.

Figure 6. Android testing call framework

The relation among keyword-driven, Robotium and
Instrumentation and their calling procedure are shown in
figure 6. The TestRunner completes the interaction of
android applications by calling the Android SDK original
InstrumentationTestRunner. In testing applications, each

Activity first will be initialized by Instrumentation, and then
is loaded into the Android simulator or Dalvik virtual
machine in the device to execute.

When the application is launching, the Instrumentation is
in an open state and will be initialized before all application
is running. Therefore, we can monitor the interactions
between the testing system and the application by using
Instrumentation. Implementation is described by the
<instrumentation> tags in the project’s AndroidManifest.xml
file [11]. Only InstrumentationTestCase or its subclasses can
use instrumentation method in the test cases.

B. Test Data storing and Processing

This paper stores data in the style of file and mainly
includes test configuration data, business test data and the
test report. The test configuration data stores in a JSON file.
Business test data will use the table structure way storage,
saved to CSV file. Because the test report in addition to
record test cases name, it also need to record test cases
operation results, operation time, and other properties, so the
test report in the way of tree structure can be saved to XML
file.

JXL is a toolkit using java to operate Excel. It supports
Excel’s reading, writing, modification of cell’s content and
properties and so on. It can be used to generate Excel 2000
standard format files and is compatible with Excel 95, 98
version. In addition, it also supports some images and
graphics operation, etc [12]. The most important thing is, JXL
API using pure JAVA supporting way, which makes it not
dependent on the Windows operating system. This means
that even if operation in other operating system, it is also
able to correctly deal with Excel form file. Therefore, this
paper uses JXL to realize the CSV file processing in Android
system.

C. Business data design

Business test data file contains all kinds of business data
needed in the test execution process, such as test cases
coding, and corresponding operation and input/output data
value, etc. Specific case design is shown in figure 7.

Figure 7. Specific case design

The details of the definition of each field in the business
test data file are shown as follow.

a) ID: Each test step has a unique ID number. If the
test cases failed to perform, according to the ID number to
trace the error steps.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1099

b) ActitvityName: To save the name of the active
Activity in the top of current task stack of being tested
program.

c) Testcase: Used to record the ID of the test cases.
d) ViewID: To save control’s ID number. Can search

control name by using Hierarchyviewer tool in Android
SDK .

e) ViewText: To save the displayed text in the control.
f) InputAction: Input operation of test steps. Such as:

InputAction for Button_S_Click, is to click on the Button; If
no input, this is null.

g) InputValue: To save the param of the input
operation. If no input, this is null.

h) OutputAction: The expected output operation.
OutputAction for JUMP, the expected output of this test
step is Activity JUMP. If no output operation, this is null.

i) OutputValue: To save the value of the output
operation. If no, this is null.

j) Execute: The execute mark of the step. The value is
Yes or No. Yes means execute this step, No means pass this
step.

k) ActualResult: The result. Pass means pass. It is
initialed Null.

D. Keywords

1) test Cases: A Test Case is a sequence of steps that
tests the behavior of a given functionality/feature in an
application. Unlike traditional test approaches, test language
uses pre-defined keywords to describe the steps and
expected results (see example in Figure 7 above). Keywords
are the basic functional sub-procedures for the test cases of
the application under test. A test case is comprised of at
least one keyword.

2) Keywords in Different Levels: One of the big
decisions to make when designing a keyword-driven
framework is the level of the keywords to be used. The low
level (e.g. Input, Push) makes them suitable for detailed
testing on the interface level. When testing higher level
functionality like business logic, low level keywords tend to
make test cases very long and higher level keywords (e.g.
Add in calculator example) are much more usable.
Sometimes it is possible to use only either low or high level
keywords and build keyword handlers accordingly. Often
both levels are needed and then it is a good idea to construct
higher level keywords from low level keywords. For
example low level keywords Input and Push could be used
to create higher level keywords Add, Subtract, Multiply and
Divide and similarly Equals could be created using Push and
Check. A straightforward way to construct new high level
keywords is letting framework developers implement
handlers for them in the framework so that the new handlers
use lower level handlers, as it is shown in Figure 8.

Figure 8. Framework with high level keyword [13]

3) Types of Keywords:
a) Item Operation (Item): Item Operation is divided

into operation keyword and results check keyword.
Operation keyword is an action that performs a specific
operation on a given GUI component. For example button
click, input value "CHANDER" in "user name" component
etc. Results check keyword is used to judge whether the
program implemented correctly and output expected results.
For example verify that the value "3" appears in "result"
field or judge whether the page jump is correct or not. When
performing an operation on a GUI item, parameters should
be specified: Name of GUI item, what operation to perform
and the values.

b) Utility Functions (Function): a script that executes a
certain functional operation that is hard \ non-effective to
implement as a Sequence. For example: wait X seconds,
take a screen shot etc[14].

c) Sequence: a set of keywords that produces a
business process, such as "create customer". We recommend
collecting frequently used functional processes such as login,
addition of new records to the system as a sequence instead
of implementing them as items in test cases[14].

4) Building the Keywords Library: The keyword-driven
testing methodology divides test creation into two stages:

a) Planning Stage: Analyzing the application and
determining which objects and operations are used by the
set of business processes that need to be tested.Determining
which operations require customized keywords to provide
additional functionality, to achieve business-level clarity,
and/or to maximize efficiency and maintainability.

b) Implementation Stage: Building a collection of
references that uniquely identify objects, sometimes known
as an "object repository", and ensuring that all such
references have clear names that follow any predetermined
naming conventions. (This is primarily for test automation.).
Developing and documenting business-level keywords in
function libraries. Creating function libraries involves
developing customized functions for the application that
needs to be tested.

Although this methodology requires more planning and a
longer initial time-investment than going directly to the test

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1100

creation stage and recording your steps, it makes the
test creation and test maintenance stages more efficient and
keeps the structure of individual tests more readable and
easier to modify.

V. AKDT FUNCTIONAL AUTHENTICATION

This section takes a function test by using an instance
Notepad of the Android Developer's Guide to introduce in
brief to the validity of the actual test. First, analyze the test
target and create three test cases. They are adding, modifying
and deleting Notes, as shown in Figure 7 and the related
keywords instructions is shown as Table 1. Some screenshots
of the AKDT Automated test process are shown in Figure 9.

Through the testing we found that if use other test
approach, you need to write three test script including each
step in the test cases which contains a total of 22 instruction.
While use AKDT, testers who have no knowledge about test
script language only need to write testing use cases in
spreadsheets by using total 10 keywords call. If the keyword
library already exists for that keyword, keywords call is
almost negligible. So, using AKDT can reduce the large
amount of work. With the expansion of the scale of the test
software, the complexity of the script itself will increase and
the role played by keyword becomes increasingly obvious.

Table 1 Test case explanation

VI. CONCLUSIONS

Practice has fully shown that it is very difficult to
complete GUI testing under android by relying on traditional
automation tools. On one hand, there are many difficulties in
capturing and maintaining the scripts. On another hand, the
test scripts generated by recording have a very poor

reusability due to the close coupling between test scripts and
test data. The AKDT uses a different approach to detach the
changed and unchanged elements. It makes a clearer
separation of testing activities, and avoids the impact
between them so that testers without knowledge about test
script language can design and create test cases easily. It is
important to understand that keywords are not magic, but
they can serve well.

It is essential to do test design in a right and efficient way.
The process of the test automation should be done but it
should not dominate the process. Automation testing should
flow with the overall strategy, methodology, and architecture.

Of course, there is still much work that needs to be
explored and improved. For example, how to expand the
keyword library conveniently and how to customize users’
own keywords by using the existing keywords. Moreover,
the existing tools available for this approach make use of
the Xml, spreadsheets to maintain test cases in object
repository which are not very scalable. And the test results
should be visually displayed by using Ant and Hudson or
other tools.

REFERENCES
[1] I.Burnstein,Practical Software Testing,Springer,2003

[2] Ron Patton, Software Testing, Person Education,2006

[3] Juha Rantanen,”Acceptance Test-Driven Development with
Keyword-Driven Test Automation Framework in an Agile
Software Project”Helsinki University of Technology, Department
of Computer Science and Engineering, Software Business and
Engineering Institute. 2007, pp.1-102

[4] Rashmi, Neha Bajpai, ”A Keyword-Driven Framework for Testing
Web Applications”, (IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 3, No. 3, 2012

[5] JIEHui，LANYu — qing，LUO Pei, ”Keyword driven automated
testing framework”, Application Research of Computers, V01.26
No．3 Mar.2009

[6] Robotium, http://code.google.com/p/robotium/, 2011-5-28

[7] Bharath Anand R., Harish Krishnankutty, kaushik Ramakrishnan,
Venkatesh V.C.,” Business Rules- Based Test Automation- A novel
Approach for accelerated testing”. 2007, pp. 1-12

[8] Faught, Danny R. (November 2004). "Keyword-Driven Testing",
Sticky Minds, Software Quality Engineering, Retrieved September 12,
2012.

[9] The net of ”test @ your choice”,” Keyword-Driven Automation Test
Framework”,http://www.cromacampus.com/Innoavtion/TAFrameWo
rk/KeyDriven.html

[10] Android SDK API, Android Testing and Instrumentation, 2012-04-02
http://developer.android.com/guide/topics/testing/testing android.html

[11] Reto Meier ，Professional Android 2 Application Development，
John Wiley &Sons，2010

[12] Java Excel API, http://www.andykhan.com/jexcelapi/, 2009-10-24

[13] Pekka Laukkanen, ”Data-Driven and Keyword-Driven Test
Automation Frameworks”, Master’s thesis submitted in partial
fulfillment of the requirements for the degree of Master of Science in
Technology. Espoo, February 24, 2006

[14] METHODS & TOOLS, Practical Knowledge for the software
developer, tester and project manager Summer 2010(Volume 19-
number1) www.methodsandtools.com

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1101

Figure 9. Automated test process screenshot

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1102

