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Abstract—In this paper we present a technique of unsupervised 
extrinsic parameters calibration for a multi-beam LIDAR 
scanner. The proposed method decomposes extrinsic 
parameter calibration procedure into two parts: computing 
rotation matrix caused by pitch angle and roll angle through 
ground plane estimation; computing rotation matrix caused by 
navigation angle through matching pole-like obstacles in a 
series of poses. Experiment results demonstrate the efficacy of 
the calibration technique.   
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I. INTRODUCTION  

Light Detection and Ranging (LIDAR) sensors are 
important parts of robot systems. Traditional LIDAR sensors 
are equipped with only one rotating beam. However, with the 
progress of science and technology, applying multi-beam 
LIDAR sensors which are often referred as 3D LIDAR 
sensors configured with many simultaneous rotating beams 
at varying angles become a trend in robot navigation. One of 
these systems is the Velodyne HDL-64E S2(Fig. 1): it 
consists of 64 lasers located on a spinning head. Since 2007 
DARPA urban challenge[1][2][3], Velodyne HDL-64E S2 
has been widely applied in SLAM, 3D perception and other 
area of robotics. 

Many work has been done in multi-beam LIDAR and 
camera calibration. In [4], author present mutual information 
(MI) based algorithm for automatic extrinsic calibration of a 
3D laser scanner and optical camera system. [5] provides an 
approach for external calibration of a 3D laser scanner with 
an omni-directional camera system. [6] proposes a method to 
estimating the intrinsic parameters of a 3D LIDAR while at 
the same time computing its extrinsic calibration with respect 
to a rigidly connected camera. Some other work focuses on 
intrinsic parameters of multi-beam LIDAR, e.g. [7][8] use 
pattern planes to calibrate intrinsic parameters. [9] mentions 
both intrinsic parameters calibration and extrinsic parameters 
calibration. 

As Fig 1 and Fig 2 present, a HDL64E S2 LIDAR has 64 
laser emitters along the vertical direction. The angle interval 
between adjacent emitters is about 0.4 degree. The resolution 
of azimuth angle is 0.09 degree which is much higher than 
elevation angle’s resolution. Due to the geometrical model of 
LIDAR system, data is sparse in vertical direction, especially 

at long distances. This effect makes 3D features unstable at 
the distance of 15m or more. However, 2D features in planes 
which parallel to horizon plane are more stable, such as pole-
like features, e.g. tree trunks, lampposts of streetlights.  

 

Azimuth 
angle

 
Figure 1.  geomertrical model of HDL64ES2 LIDAR: left figure is 

sideview of the LIDAR; right figure is top view of the LIDAR 

 

 
Figure 2.  data assembled by HDL64ES2: different color represents 

different laser beam 

Given that the LIDAR is often mounted on a vehicle 
platform which also has an IMU and GPS system, we 
propose a two step unsupervised calibration method: 
computing rotation matrix caused by pitch angle and roll 
angle through estimating ground plane; computing rotation 
matrix caused by navigation angle through matching pole-
like obstacles in a series of the vehicle poses gotten from the 
IMU and GPS system.  

The paper is organized as follows: section II describes 
system architecture of our vehicle platform; section III 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1110



 

introduces data preprocessing; section IV presents the 
calibration procedure; section VI provides the experiment 
results. 

II. SYSTEM ARCHITECTURE 

Our vehicle is shown in Fig 3. The Velodyne HDL-64E 
S2 LIDAR sensor is mounted on the top of the vehicle. The 
vehicle pose estimation system is comprised of IMU, GPS 
and a wheel encoder. It reliably provide ego-motion data. 

The vehicle frame and the LIDAR frame are shown in 
Fig.4. We define yaw angle γ rotates around Z-axis, roll 
angle β rotates around Y-axis, pitch angle α rotates around 
X-axis. 

 
Figure 3.  Vehicle platform for 

experiment

 

Figure 4.  Vehicle frame and LIDAR frame 

III. DATA PREPROCESSING 

The original sensor readings are in spherical 
coordinates, while we use 3D points in Cartesian 
coordinates. So the sensor readings are transformed into 
Cartesian coordinates first according to LIDAR geometrical 
model. 

Denoting the i th laser beam’s elevation angle with iθ , 

rotation angle in time t  is tφ , the measurement is tr , the 

computation of 3D points is as (1): 

                             















=

















)sin(

)sin()cos(

)cos()cos(

θ
φθ
φθ

ti

ti

t

t

t

t

r

z

y

x
                   (1) 

Due to the motion of the vehicle and the fact that the 
scanner takes a non-negligible amount of time(60ms~150ms) 
to complete one rotation, the point clouds will be distorted 
by vehicle motion. We use vehicle pose data to rectify the 
point clouds. 

The vehicle pose information can be received at the 
instant of every frame ending. The pose information in one 
frame at time t  is computed by linear interpolating the poses 
difference between the current frame and the last frame. 
Denoting LIDAR working at f  Hz, the pitch angle 
difference of the concessive two frames is α . The pitch 
angle at time t  is approximated by linear interpolation as 

( ) atfta ⋅⋅= , the other angles and translations 

components can be computed analogously. 
From these angles and translations, we can derive the 

rotation matrix and translation at time t . 
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IV. APPROACH 

According to Euler-angles’ definition, LIDAR frame to 
vehicle frame rotation matrix R and translation T can be 
decomposed into two parts as (3) shown:  

rotation 1R  caused by pitch angle α , roll angle β  and 

translation 1T  caused by z component;  

rotation 2R  caused by yaw angle γ  and translation 2T  
caused by x and y component. 

2121 , TTTRRR +==                      (3) 

 

A. Ground extracting and 1R , 1T  Computation 

The vehicle is driven on a flat urban road. Ground plane 
is extracted by fit 3D points in region of interest through 
RANSAC.  

The ground plane in LIDAR frame can be represented as 
(4): 

0=+−+ czByAx                           (4) 
Assuming yaw angle, x component and y component in 

translation are all zero. Sensor to vehicle’s pitch angle, 
rotation angle and translation in z axis are computed as fig 5. 
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Figure 5.  Tait-Bryan angles Z-Y-X 
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B. Pole-like Obstacle labeling and 2R , 2T  Computation  

Similar to [10], we slice point clouds to get arc features 
and use arc curvature centers as labeled points for 
calibration. 

Two group of points 
tiP,
，

1, +tiP are labeled features in 

two consecutive data frame tf , 1+tf , so tiP, and 1, +tiP can 

be matched as : 

1,,,,,, +=+ titiltitil PTPR                        (7)  

At time 1+t , we can derive vehicle local pose 

difference tsR , and tsT ,  to its pose at time t . For LIDAR is 

rigidly connected to vehicle, rotation in LIDAR frame 

equals to rotation 
tsR ,
, so 

tstil RR ,,, = . Translation tlT ,  of 

LIDAR frame at time t  is approximate by the average 
translation of all the match points at the time.. 
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The relation of tstl TT ,, ,  can be used to compute 

rotation and translation between the two system. 

tstsptlp TTRTTR ,,, +=+                        (9) 

We compute pR , pT by solving least square formula 

(10) 
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For the coefficients are linear in (10), it has the solution 
similar to (11), then it’s easy to get 2R , 2T : 

BAAAX TT 1)( −=                           (11) 
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V. EXPERIMENT AND RESULTS 

The calibration algorithm is tested by our vehicle 
platform in real environment . 

A. Ground Extraction and Pose estimation 

The region of interest for ground estimation is set as: 
[-500cm, 800cm] in x-axis, [-2000cm, 3500cm] in y-axis, 
shows in fig.6; 

 
Figure 6.  Ground Plane Extraction: red area is the region of interest for 

RANSAC 

The result of RANSAC ground plane is: 
03088.2270041.00004.0 =−−+− zyx  

11,TR  are computed by (5) (6). 

B. Pole-like Feature Extraction and Pose Estimation  

The vehicle is driven along the curved road at speed of 
10km/h, the track is shown in fig.7.  

 
Figure 7.  Vehicle’s Track 

Every five frame, system extracts pole-like feature(see 
fig.8) and record vehicle pose from pose estimation system, 

Then use(8) – (12) to compute 2R , 2T . 
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Figure 8.  Pole-like Feature Extraction 

C. Performance Evaluation 

We use supervised calibration which takes a lot of hand 
measurements as ground truth. After our unsupervised 
calibration, the error distances are dropping significantly. In 
fig.9, after calibration ground plane in LIDAR frame is very 
close to the ground in vehicle frame , most of error distances 
under 5 cm; in fig.10 calibration also reduces 3D points’ 
error distance between LIDAR frame and vehicle frame.  

 
Figure 9.  Error distance to ground plane comparison 

 
Figure 10.  Error distance to 3D points comparison  

VI. CONCLUSION 

Multi-beam LIDAR’s importance is increasing in the 
field of robotics. The powerful ability of 3D perception 
makes it irreplaceable in 3D-SLAM. It’s sure that there are 

still many of application can be developed in the huge 
amount of data provided by multi-beam LIDAR. For any 
sensor, calibration is one of the most important procedures 
before it generates valid data. The paper has presented an 
unsupervised method which shows how to simply and 
efficiently do calibration. We now aim to work on the 
calibration of LIDAR intrinsic parameters, possibly 
simultaneous calibration of LIDAR intrinsic parameters and 
extrinsic parameters. 
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