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Abstract-Adaptive nulling methods under multiple constraints 
for Digital Beamforming (DBF) of Uniform Linear Arrays 
(ULA) are proposed, which is studied in three aspects: with 
main lobe constraint only, with main and side lobe constraints, 
with main and side lobe constraints and given nulls constraints. 
Optimum weight vector of DBF is derived by Lagrange 
multiplier approach and calculated with sample matrix 
inversion algorithm. Effectiveness and correctness of the 
proposed methods are verified by computer simulations. 
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I.  INTRODUCTION 

Adaptive Digital Beamforming(ADBF)[1] is an 
advanced array signal processing technique, which is 
developing from antenna theory, control theory and 
adaptive signal processing theory. Currently, DBF is mostly 
used in receiving mode, many radar experts concentrate on 
the receiving digital beamforming. According to the signal 
environment, receiving ADBF is to automatically adjust 
null to restrain interference[2,3]. 

Theoretically, transmitting DBF is possible since 
receiving DBF is practicable. In recent years, experts have 
paid more attention to the transmitting DBF and tried to 
apply it to radar and radar EW system. To radar and radar 
EW system, adaptive nulling[4,5] of transmitting DBF is 
very important, which can raise the anti-reconnaissance 
ability, promote the anti-ARM ability, and avoid the 
interference of the system. 

Adaptive nulling methods with multiple constraints for 
transmitting DBF of ULA are discussed in the following 
three circs, with main lobe constraint only, with main and 
side lobe constraints, with main and side lobe constraints 
and given nulls constraint. And the optimal weight vector 
of transmitting DBF is derived by Lagrange multiplier 
approach and calculated with sample matrix inversion 
algorithm. The computer simulation result shows that the 
proposed method is practicable and effective. 

II. ADAPTIVE NULLING METHODS OF DBF 

A. The array signal model 
Suppose that the signal is narrowband, the uniform 

linear array is composed of L elements and the space 
between is d. Take the first array element of the left side as 
the phase reference. On the condition that there are m 
emitters, each emitter is statistically independent, then the 
signal of element k is 
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where rr λπρ /2= ， rλ  is the wavelength of the signal, 

mθ  is the azimuth of emitter m, )(tnk  is the measure 

noise. The matrix form of the equation is 
n(t)As(t)x(t) +=                 (2) 

where 
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steering vector of array element m. 
The output of the array is the weighted sum of all the 
element’s signal. Assumed that the weight coefficient of the 

kth element is kw , the weight coefficient vector is 
T

Lwww ][ 21 =w , then the output of the array is 

x(t)wy(t) H=              (3) 

And the array pattern is  

))( a(θwH=θF               (4) 

The power output of the array is 

wRwwAARw(t)E{y(t)y n
HH

s
HH +=} , where 

(t)}E{s(t)sR H
s =  is the covariance matrix of the signal, 

(t)}E{n(t)nR H
n =  is the covariance matrix of the noise. 

B. Adaptive nulling with main lobe constraint 
Suppose that all the emitters in equation (2) are 

interference source (that is s(t)J(t) = , AAJ = ), and the 

needing signal is nonexistent, but the direction of the 
needing signal is known. Then the power out (the power of 
the interference and noise) is 

wRwwARAw(t)E{y(t)y n
HH

JJJ
HH +=}     (5) 

where (t)}E{J(t)JR H
J =  is the covariance matrix of 

interference. 
The main lobe constraint is shown as follow. 

1=)a(wH
mθ              (6) 

where mθ is the direction of the needing signal, that is, the 

direction of the main lobe . 

Given n
H
JJJI RARAR += . Since the needing signal is 

nonexistent, then obviously Ix RR = , where 
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(t)}E{x(t)xR H
x = . As a result, the above-mentioned 

optimum problem with constraint can be described as: to 
obtain the optimum weight vector w, which satisfies that the 

power output wRwP x
H=  reaches minimum value with 

the constraint (6). 
Now we solve the problem with the Lagrange multiplier 

approach, the Lagrange function is defined as follow. 

]1[ u
H

x
H awwR0.5wL(w) −+= β            (7) 

where β  is Lagrange multiplier. 

L(w)  is a quadratic function of w, so the optimum w can 

be calculated from the equation 0=−=∇ βux awRL(w)w . 

We have 

βu
1

x aRw −=opt                 (8) 

The weight vector must satisfy the constraint equation (6). 
According to equation (8) and equation (6), we have 
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C. Adaptive nulling with main and side lobe constraint 
Usually we still want to control the side lobe, and then 

equation (8) should be modified. Suppose that the weight 
vector without side lobe constraint is 0w , and the noise 

covariance matrix is nR , then we can define a new row 

vector as follow. 
1)−−= eRe(ewR 1

n
H

0n             (10) 

Based on this equation, we have 
1−= )w(wwe 0

H
00                (11) 

Comparing equation (10) with (9), we know that the 
main lobe constraint is not equation (6) any more. The 
modified main lobe constraint is 

1=ewH                      (12) 
And then, we can obtain the optimum transmitting weight 

vector, which is shown as follow. 
1−−−= e)Re(eRw 1

x
H1

xopt           (13) 

D. Adaptive nulling with main and side lobe constraint and 
given nulls constraint 

We have discussed the method of adaptive nulling in the 
unknown directions of interferences. However, in the 
transmitting mode, we not only hope null in the direction of 
interference, but also hope null in a given direction. So the 
method of adaptive nulling with main and side lobe 
constraint and given nulls constraint is discussed as follow. 

In this case, when we calculate the optimum weight 
vector, we should consider not only the main and side lobe 
constraint, but also the given null constraint. The given null 
constraint is expressed as 

gig Ni ,,1,0, ==awH                (14) 

where ig ,a is the directions of given nulls, gN is the 

number of given nulls. 

Now we calculate the optimum weight vector w with 
main and side lobe constraint and given nulls constraint, 
which satisfies that the power output reaches minimum 
value. 

Let ][ ,1, gNgg aa qC = , ]001[ =b ， here C is a 

matrix with dimension of )1( +× gNL , and b is a vector 

with dimension of )1(1 +× gN . Then the main and side 

lobe constraint and given null constraint can be rewritten as 

bCwH =                  (15) 
Obviously, there is 1−≤ LN p . Now we use the 

Lagrange multiplier approach to solve the this problem. The 
Lagrange function is defined as follow. 

]Cwβ[bwR0.5wL(w) H
x

H −+=       (16) 

From 0=−=∇ CβwRL(w) xw , we have 

CβRw 1
x
−=opt                (17) 

The optimum w must satisfy the constraint equation (14). 

When let (17) in (14), we have H11
x

H bC)R(Cβ −−= . And 

replace β  in (17), we have 
H11

x
H1

x bC)RC(CRw −−−=opt        (18) 

The optimum weight vectors with different constraints 
are shown in equations (9), (13) and (18) respectively. 
However, xR  (or IR ) is usually unknown or hard to get. 

Here we use the sample matrix inversion algorithm to 
calculate the optimum weight vector. In this algorithm, xR  

is estimated as follow. 
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where )(ˆ NxR  is the estimation of xR  of the Nth sample. 

And )(ix  is the array signal of the ith sample.  

III.  COMPUTER SIMULATIONS 

Suppose the transmitting Uniform Linear Array has 15 
elements, the space between is a half of wave-length, the 
signal noise ratio (SNR) is 20 dB, sample times are 512. 

(1) Adaptive nulling with main lobe constraint only. The 
direction of the transmitting main lobe is 0º on request. 
Suppose there is only one interference, which direction is 
20º. The pattern of adaptive nulling is shown as solid line in 
Fig.1 (a), the null depth is -68.7dB. The dotted line 
represents the original pattern without nulling. Suppose 
there are two interferences, which directions are 20º and 28º. 
The pattern of adaptive nulling is shown in Fig.1 (b), null 
depths are -54.8 and -62.2dB respectively. 

(2) Adaptive nulling with main and side lobe constraints. 
The direction of the transmitting main lobe is 0º, and the 
side lobe is -30dB Dolph-Chebyshev weighted on request. 
Suppose there is only one interference, which direction is 
20º. The pattern of adaptive nulling is shown as solid line in 
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Fig.2 (a), the null depth is -73.3dB. The dotted line 
represents the original pattern of -30dB Dolph-Chebyshev 
weighted without nulling. Suppose there are two 
interferences, which directions are 20º and 31º. The pattern 
of adaptive nulling is shown in Fig.2 (b), the null depths are 
-71.2dB and -67.9dB respectively. 

(3) Adaptive nulling with main and side lobe constraints 
and given null constraint. The direction of the transmitting 
main lobe is 0º, and the side lobe is -30dB 
Dolph-Chebyshev weighted, and there is a given null in the 
direction of 45º on request. Suppose there is only one 
interference, which direction is 20º. The pattern of adaptive 
nulling is shown as solid line in Fig.3 (a), the adaptive null 
depth is -63.1dB and the given null depth is lower than 
-80dB. Suppose there are two interferences, which 
directions are 20º and 31º. The pattern of adaptive nulling is 
shown in Fig.3 (b), the adaptive null depths are -71.2dB and 
-67.9dB respectively and the given null depth is lower than 
-80dB. 

  
Fig.1(a) Nulling with main lobe constraint (1 interference) 

 
Fig.1(b): Nulling with main lobe constraint (2 interference) 

  
Fig.2(a): Nulling with main and side lobe constraints 

 (1 interference) 

  
Fig.2(b): Nulling with main and side lobe constraints 

(2 interference) 

 
Fig.3(a): Nulling with main and side lobe constraints and given null 

constraint (1 interference) 

 
Fig.3(b): Nulling with main and side lobe constraints and given null 

constraint (2 interference) 

IV. CONCLUSIONS 

When we apply DBF to radar and radar EW system, 
adaptive nulling is very important, which can raise the 
anti-reconnaissance ability, promote the anti-ARM ability, 
and avoid the interference of the system. Adaptive nulling 
methods with multiple constraints for transmitting DBF of 
ULA are discussed in this paper. The computer simulations 
show that the proposed methods are practicable and 
effective. 
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