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Abstract—Buffer insertion is an efficient technique in inter-
connect optimization. By inserting numbers of buffers, a wire 
can be turned into several nodes, so the total delay can be 
reduced. Buffer insertion has become a hot area of research in 
recent years. By constructing the optimal buffer insertion 
model, we can change the problem of buffer insertion into a 
shortest path problem in a directed graph. In this paper, we 
will introduce buffer insertion technique under one-
dimensional line model and make a detailed analysis of a graph 
division algorithm under this model. This paper also presents a 
parallel shortest algorithm based on relaxed heap to solve the 
SSP problem of the divided graph. Experiments show that our 
shortest path algorithm can greatly reduce the time of finding 
optimal buffer insertion position, and with the increase of the 
number of buffers the speedup becomes more obvious. 

Keywords-relaxed heap; VLSI; buffer insertion; parallel 
shortest path; graph division 

I.  INTRODUCTION 

As the VLSI design develops into ULSI stage, the 
attachment of the parasitic effect can’t be ignored. The 
proportion of wiring delay is always increasing and it has 
replaced the gate delay as the main factor of the total delay. 
Therefore interconnect optimization technique becomes the 
key step of high-performance IC design. In nano-scale 
design, wiring delay has become the main delay of total 
delay. The delay is proportional to the square of the line 
length and it will be reduced after inserting buffers which 
make a line into several nodes. An algorithm has been 
proposed by Liang Deng according to the basic ideas of 
buffer insertion[1]. This algorithm changes the basic model 
into a directed graph by node splitting according to mean and 
variance of each node to the source node. Then the problem 
becomes the shortest path problem of the directed graph. But 
the directed graph is so large that there should be an efficient 
algorithm to solve the SSP problem. Relaxed heap is a kind 
of priority queue structure designed by Driscoll, Gabow, 
Shrairman and Tarjan. It is different from Fibonacci heap[2]. 
There are two kinds of relaxed heaps, the first one achieves 
the same amortized bounds as Fibonacci heaps and the 
second one achieves the same bounds in the worst case rather 
than amortized case. Relaxed heap is more suitable for 
parallel algorithm. 

This paper presents a parallel shortest path algorithm 
based on relaxed heap and sequential shortest path algorithm. 
Based on the theory of buffer insertion and graph division 

algorithm, the position problem of buffer insertion can be 
quickly solved. 

II. BASIC THEORIES 

A. Buffer Insertion Technique 

Buffer insertion technique in the interconnection lines is 
to make the respective insertion position equivalent to a node 
and then the optimal number of buffer insertion and location 
in the interconnection lines are determined according to a 
certain cost function. According to the current research, in 
the technology below 65nm, the delay parameters of 
interconnection lines are not decreased by equal proportion 
with the size of the device[1]. Therefore when the delay is 
considered, it is a random variable according to the 
probability distribution. So under the model of buffer 
insertion, the weight of graph edge will not be a fixed value 
and a conversion algorithm will be needed. This paper only 
studies the delay of one-dimensional line model. 

 
Figure 1.  Buffer Insertion Model 

Considering the directed graph G, Figure 1, where 
buffers have been equivalent to nodes, we need to find a path 
P from the source node s to the end node t, LP is its length, μP 
and σP

2 are its mean and variance, the cost function is μP+kσP. 
This path allows the minimum cost function. For an arbitrary  
edge e of G, assume Xe its distribution function, μe and σe

2 

are its mean and variance. The distributions of all the edges 
are assumed to be independent of each other. We know that 
the two independent random variables X and Y, if Z = X + Y, 
then the mean and variance of Z can be obtained by adding 
the mean and variance of the two variables. Considering a 
path P in G, by adding the mean and variance, we can obtain: 
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P iμ μ=  , 

2 2
P iσ σ=  

If the cost function is μP+kσP
2, the problem can be solved 

by judging the sum of cost function of each edge. But the 
cost function is μP+kσP and the standard deviation does not 
have a feature of linear sum, a new approach will be required. 
A lemma will be introduced first: 

If the variance of any path from the source node to 
the end node is less than or equal to B, then the variance 
of any sub-path of G is smaller than B[3]. 

Now we can use the node splitting technique to solve the 
earlier problems. Assuming that the variance of each edge is 
an integer (if not, a nearby integer can be used), then we will 
use the algorithm proposed in this paper to solve the shortest 
path problem. According to the lemma, we obtain that the 
variance of each s-u path are integers between 1-B. The node 
ui of G’(after splitting) represents the end node whose 
variance is i of the path s-u. For ui, we call i the variance 
index. By the lemma, we only need to consider the path 
whose variance is less than B in graph G. Therefore, in graph 
G, except the source node s, the remaining nodes simply 
need to split into B nodes after converting G to G’. We can 
reduce the total number of nodes by merging the nodes with 
the same variance in the same topology layer. Since we 
assume that all nodes in G are uniformly distributed, then, 
the mean and variance of two nodes in the G’ depend on the 
number of layers between the two nodes. Then the number of 
nodes created in each layer is 

( ) ( )
=1

k

r
r

kP i P n k= −
,
 

the number of total nodes is 

( ) ( )
1

i

k
k

P i P i
=

=
.
 

The entire structure of graph transform algorithm is 
shown in Figure 2, the source node only needs a point s0 in 
G’ to represent, nodes in the remaining layers should be split 
and finally you need to create an additional node to represent 
the endpoint. 

 
Figure 2.  Graph Division Algorithm 

B. Relaxed Heap 

Relaxed heap is a kind of priority queue data structure 
and there are two kinds of relaxed heaps, rank relaxed heap 

and run relaxed heap[2]. Both of them consist of relaxed 
trees which are based on binomial trees and more structured 
than the Fibonacci trees[4]. Relaxed tree divides nodes in the 
trees into two groups: good nodes and bad nodes. Root node 
and nodes whose parent’s key is bigger than its own are all 
good nodes and other nodes are bad nodes. This is called 
relaxed character of the relaxed heap. Some nodes in relaxed 
heap are defined as active and all of the bad nodes are active. 
In the rank relaxed heap, there is no more than one active 
node in each layer and each active node must be the last 
child. Different from the rank relaxed heap, run relaxed heap 
allow the operation of the bad nodes. There are two main 
differences between relaxed heap and binomial heap: one is 
the structure of the tree which is detailed in the preceding 
text, the other is the core operation of relaxed heap, 
decrease_key(x,v) which decreases the key of node x to v. 
The decrease_key operation tries to keep the relaxed 
character of the heap by rearranging the nodes. After 
updating the key of special node to smaller one, it will adjust 
the structure of the heap to keep the number of the active 
nodes unchanged or make it smaller and then stop or make 
another adjustment[2]. After a series of adjustments, the 
relaxed character of relaxed heap will be kept. Figure 3 
shows the specific algorithm of relaxed heap. 

 
Figure 3.  Relaxed Heap Algorithms 

The relaxed heap can achieve lower time complexity by 
keeping its relaxed character. The amortize time complexity 
of the following operations of rank relaxed heap, MAKE-
HEAP, INSERT, MINIMUM, UNION and DECREASE-
KEY, are O(1) and other operations’ amortize time 
complexity is O(lg n). But run relaxed heap achieves the 
same time bounds in the worst case. 

Function decrease_key(x,v) 
Begin key(x) = v; promote(x) end 
Function promote(x) 
Begin 
 r = rank(x), p = parent(x), s = sibling(x,r + 
1), g = grandparent(x) 
 if  key(x) < key(p) then 
  if x is the last child of p then  
   if active(r) == NULL then 
active(r) = x 
   else if active(r) != x then 
pair_transform end 
  else if active(r+1) == s then 
active_sibling_transform 
   else 
good_sibling_transform 
 end 
end 
Function pair_transform 
… 
Function active_sibling_transform 
… 
Function good_sibling_transform 

Create 0th and 1th layer 
for  2th to (n-1)th layer 

foreach  μi in G’ 
if   i+σuv

2 don’t exit  
                      Create new node vj，variance j= i+σuv

2 
                      Create arc (μi,vi)，arc weight μuv 
                else vi already exit, Create arc (μi,vi),  arc 
weight μuv  
Create end node t’，set it the nth layer 
foreach node ti in the (n-1)th layer 

Create arc (ti,t’), weight  Φ(i) 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1236



C. Shortest Path Algorithm 

Considering directed graph G(V,E) where V is the set of 
vertexes and E is the set of edges. We assume s is the source 
node, d[v] is the distance from v to the source node s, c(u,v) 
is the weight of node u and node v and Q is the minimum 
priority queue. The serial shortest path algorithm of directed 
graph is shown in Figure 4. 

 
Figure 4.  Serial Shortest Path Algorithm 

The parallel shortest path algorithm can optimize the 
above a, b and c parts. The idea is that, first, we divide nodes 
of directed graph into different groups. In order to balance 
the loads, each processor node should share almost the same 
number of nodes. Each processor node maintains a minimum 
priority queue which is related to the set of vertexes it cares 
for and all of the minimum priority queues are based on the 
relaxed heap. At the beginning, all processor nodes do the 
initial operation. Then each processor does find-min on its 
priority queue. Then the smallest of all the priority queue 
minima is found by doing a parallel minimum computation. 
Then we mark the node with the minimum value and the 
node number and the minimum value are broadcast to all 
processor nodes. The processor node containing the 
minimum value will do decrease operation on its priority 
queue. Each processor node will do relaxation operation. The 
above steps will be repeated to the end. The main framework 
is shown in Figure 5. 

We now analyze the time complexity. Supposed p is the 
number of processors, n is the number of vertexes, and m is 
the number of edges. First is initial operation, the time of 
computing all the value of array d is O(n) in the worst case 
which means s connects to all vertexes and the time of 
creating relaxed heaps is O(p log (n/p)). Second, we need 
two steps to analyze the time complexity of the main loop 
operation. First, we consider the operations not involving the 
priority queues. The processor communication time for n 
minimum computations and n broadcasts is O(n log p). Take 
the relaxation operation into consideration, all edges must be 
traversed. So the time complexity is O(m/p) on average when 

each processor gets almost the same number of edges. So the 
total time complexity is O(n log p + m/p). Now consider the 
time for priority queue operations, we need n executions of 
find_min, delete and decrease. All of these operations use 
time O(n log n + n log (n/p)). Considering the non-priority 
queues operations, the parallel shortest path algorithm need 
total time O(m/p + n log n).  

Data Partition

Process 0

Init d[]

Make Heap

...

...

...

Process n

Init d[]

Make Heap

Process 0

Get the minimum 
value of 

priority queue

...

Process n

Get the minimum 
value of 

priority queue

Process 0

Relaxation 
Operation

Update Priority 
Queue

...

Process n

Relaxation 
Operation

Update Priority 
Queue

Reduce the global minimum value

Do the following operations until all nodes are marked

 
Figure 5.  Framework of Parallel Shortest Path Algorithm 

III. RESULTS 

We need two steps to do the experiments. First we create 
an original directed graph under the one-dimensional line 
model, then create a new directed graph using the graph 
division algorithm and store the new graph into file. These 
steps don’t involve parallel computing. Second we use our 
parallel shortest path algorithm to get the shortest path of 

( a ) Initial 
foreach v in V do 

 d[v] = MAX 
end 

 d[s] = 0 
 Creat(Q,V) 
 while IsEmpty(Q) != NULL do 

( b ) ExtractMin(Q) 
  u in Q and d[u] = min{d[v], v in Q} 
 ( c ) Relax 
  foreach (u,v) in E do 
         if d[u] + c(u,v) < d[v] then 
   d[v] = d[u] + c(u,v) 
    Update(Q,v) 
         endif 
  end 
end 
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graph which is stored in file. The parallel environment is 
based on MPI under Intel(R) Core(TM)2 Quad CPU Q8300 
@ 2.5GHz with 2G storage. The results are shown in Table 1. 

TABLE I.  RESULTS 

Buffer 
Num 

After Graph Division Serial 
Time(s) 

Parallel 
Time(s) 

Speed-
up Vertex 

Num 
Edge Num 

50 9324 95814 0.055 0.04 1.375 
100 146675 2843186 1.21 0.63 1.92 
110 217141 4611721 2.02 0.94 2.14 
120 310943 7186600 3.14 1.48 2.18 
130 432960 10822831 4.89 2.16 2.26 
140 588458 15825762 6.68 2.82 2.36 

 
The results show that our shortest path algorithm is very 

stable under the 4-core CPU and with the increase of the 
number of buffers the speedup becomes more obvious. 

IV. CONCLUSION 

In this paper, we showed a buffer insertion technique 
under one-dimensional line model and made a detailed 
analysis of the graph division. We also gave a new data 
structure called relaxed heap which has a very low time 

bounds and came up with a parallel shortest path algorithm 
based on relaxed heap. We made experimental simulation to 
test our algorithm. The results show our algorithm is very 
efficient especially under great number of buffers, so this 
algorithm has a wide range of applications. Our parallel 
algorithm is based on the serial Dijkstra algorithm, in fact, 
there are many good parallel algorithms which are not based 
on Dijkstra. So how to improve the efficiency of parallel 
algorithm needs to be further discussed [5]. 
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