
A Parallel Shortest Path Algorithm Based on Relaxed Heap for VLSI Wiring

Xiaoyang Lian
Department of Computer Science

and Engineering
Harbin Institute of Technology

150001 Harbin, China
Lianxiaoyang.happy@163.com

Zhenzhou Ji
Department of Computer Science

and Engineering
Harbin Institute of Technology

 150001 Harbin, China
jzz@pact518.hit.edu.cn

Xiong Su
Department of Computer Science

and Engineering
Harbin Institute of Technology

 150001 Harbin, China
hit_suxiong@163.com

Abstract—Buffer insertion is an efficient technique in inter-
connect optimization. By inserting numbers of buffers, a wire
can be turned into several nodes, so the total delay can be
reduced. Buffer insertion has become a hot area of research in
recent years. By constructing the optimal buffer insertion
model, we can change the problem of buffer insertion into a
shortest path problem in a directed graph. In this paper, we
will introduce buffer insertion technique under one-
dimensional line model and make a detailed analysis of a graph
division algorithm under this model. This paper also presents a
parallel shortest algorithm based on relaxed heap to solve the
SSP problem of the divided graph. Experiments show that our
shortest path algorithm can greatly reduce the time of finding
optimal buffer insertion position, and with the increase of the
number of buffers the speedup becomes more obvious.

Keywords-relaxed heap; VLSI; buffer insertion; parallel
shortest path; graph division

I. INTRODUCTION

As the VLSI design develops into ULSI stage, the
attachment of the parasitic effect can’t be ignored. The
proportion of wiring delay is always increasing and it has
replaced the gate delay as the main factor of the total delay.
Therefore interconnect optimization technique becomes the
key step of high-performance IC design. In nano-scale
design, wiring delay has become the main delay of total
delay. The delay is proportional to the square of the line
length and it will be reduced after inserting buffers which
make a line into several nodes. An algorithm has been
proposed by Liang Deng according to the basic ideas of
buffer insertion[1]. This algorithm changes the basic model
into a directed graph by node splitting according to mean and
variance of each node to the source node. Then the problem
becomes the shortest path problem of the directed graph. But
the directed graph is so large that there should be an efficient
algorithm to solve the SSP problem. Relaxed heap is a kind
of priority queue structure designed by Driscoll, Gabow,
Shrairman and Tarjan. It is different from Fibonacci heap[2].
There are two kinds of relaxed heaps, the first one achieves
the same amortized bounds as Fibonacci heaps and the
second one achieves the same bounds in the worst case rather
than amortized case. Relaxed heap is more suitable for
parallel algorithm.

This paper presents a parallel shortest path algorithm
based on relaxed heap and sequential shortest path algorithm.
Based on the theory of buffer insertion and graph division

algorithm, the position problem of buffer insertion can be
quickly solved.

II. BASIC THEORIES

A. Buffer Insertion Technique

Buffer insertion technique in the interconnection lines is
to make the respective insertion position equivalent to a node
and then the optimal number of buffer insertion and location
in the interconnection lines are determined according to a
certain cost function. According to the current research, in
the technology below 65nm, the delay parameters of
interconnection lines are not decreased by equal proportion
with the size of the device[1]. Therefore when the delay is
considered, it is a random variable according to the
probability distribution. So under the model of buffer
insertion, the weight of graph edge will not be a fixed value
and a conversion algorithm will be needed. This paper only
studies the delay of one-dimensional line model.

Figure 1. Buffer Insertion Model

Considering the directed graph G, Figure 1, where
buffers have been equivalent to nodes, we need to find a path
P from the source node s to the end node t, LP is its length, μP
and σP

2 are its mean and variance, the cost function is μP+kσP.
This path allows the minimum cost function. For an arbitrary
edge e of G, assume Xe its distribution function, μe and σe

2

are its mean and variance. The distributions of all the edges
are assumed to be independent of each other. We know that
the two independent random variables X and Y, if Z = X + Y,
then the mean and variance of Z can be obtained by adding
the mean and variance of the two variables. Considering a
path P in G, by adding the mean and variance, we can obtain:

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1235

P iμ μ= ,

2 2
P iσ σ=

If the cost function is μP+kσP
2, the problem can be solved

by judging the sum of cost function of each edge. But the
cost function is μP+kσP and the standard deviation does not
have a feature of linear sum, a new approach will be required.
A lemma will be introduced first:

If the variance of any path from the source node to
the end node is less than or equal to B, then the variance
of any sub-path of G is smaller than B[3].

Now we can use the node splitting technique to solve the
earlier problems. Assuming that the variance of each edge is
an integer (if not, a nearby integer can be used), then we will
use the algorithm proposed in this paper to solve the shortest
path problem. According to the lemma, we obtain that the
variance of each s-u path are integers between 1-B. The node
ui of G’(after splitting) represents the end node whose
variance is i of the path s-u. For ui, we call i the variance
index. By the lemma, we only need to consider the path
whose variance is less than B in graph G. Therefore, in graph
G, except the source node s, the remaining nodes simply
need to split into B nodes after converting G to G’. We can
reduce the total number of nodes by merging the nodes with
the same variance in the same topology layer. Since we
assume that all nodes in G are uniformly distributed, then,
the mean and variance of two nodes in the G’ depend on the
number of layers between the two nodes. Then the number of
nodes created in each layer is

() ()
=1

k

r
r

kP i P n k= −
,

the number of total nodes is

() ()
1

i

k
k

P i P i
=

=
.

The entire structure of graph transform algorithm is
shown in Figure 2, the source node only needs a point s0 in
G’ to represent, nodes in the remaining layers should be split
and finally you need to create an additional node to represent
the endpoint.

Figure 2. Graph Division Algorithm

B. Relaxed Heap

Relaxed heap is a kind of priority queue data structure
and there are two kinds of relaxed heaps, rank relaxed heap

and run relaxed heap[2]. Both of them consist of relaxed
trees which are based on binomial trees and more structured
than the Fibonacci trees[4]. Relaxed tree divides nodes in the
trees into two groups: good nodes and bad nodes. Root node
and nodes whose parent’s key is bigger than its own are all
good nodes and other nodes are bad nodes. This is called
relaxed character of the relaxed heap. Some nodes in relaxed
heap are defined as active and all of the bad nodes are active.
In the rank relaxed heap, there is no more than one active
node in each layer and each active node must be the last
child. Different from the rank relaxed heap, run relaxed heap
allow the operation of the bad nodes. There are two main
differences between relaxed heap and binomial heap: one is
the structure of the tree which is detailed in the preceding
text, the other is the core operation of relaxed heap,
decrease_key(x,v) which decreases the key of node x to v.
The decrease_key operation tries to keep the relaxed
character of the heap by rearranging the nodes. After
updating the key of special node to smaller one, it will adjust
the structure of the heap to keep the number of the active
nodes unchanged or make it smaller and then stop or make
another adjustment[2]. After a series of adjustments, the
relaxed character of relaxed heap will be kept. Figure 3
shows the specific algorithm of relaxed heap.

Figure 3. Relaxed Heap Algorithms

The relaxed heap can achieve lower time complexity by
keeping its relaxed character. The amortize time complexity
of the following operations of rank relaxed heap, MAKE-
HEAP, INSERT, MINIMUM, UNION and DECREASE-
KEY, are O(1) and other operations’ amortize time
complexity is O(lg n). But run relaxed heap achieves the
same time bounds in the worst case.

Function decrease_key(x,v)
Begin key(x) = v; promote(x) end
Function promote(x)
Begin
 r = rank(x), p = parent(x), s = sibling(x,r +
1), g = grandparent(x)
 if key(x) < key(p) then
 if x is the last child of p then
 if active(r) == NULL then
active(r) = x
 else if active(r) != x then
pair_transform end
 else if active(r+1) == s then
active_sibling_transform
 else
good_sibling_transform
 end
end
Function pair_transform
…
Function active_sibling_transform
…
Function good_sibling_transform

Create 0th and 1th layer
for 2th to (n-1)th layer

foreach μi in G’
if i+σuv

2 don’t exit
 Create new node vj，variance j= i+σuv

2
 Create arc (μi,vi)，arc weight μuv
 else vi already exit, Create arc (μi,vi), arc
weight μuv
Create end node t’，set it the nth layer
foreach node ti in the (n-1)th layer

Create arc (ti,t’), weight Φ(i)

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1236

C. Shortest Path Algorithm

Considering directed graph G(V,E) where V is the set of
vertexes and E is the set of edges. We assume s is the source
node, d[v] is the distance from v to the source node s, c(u,v)
is the weight of node u and node v and Q is the minimum
priority queue. The serial shortest path algorithm of directed
graph is shown in Figure 4.

Figure 4. Serial Shortest Path Algorithm

The parallel shortest path algorithm can optimize the
above a, b and c parts. The idea is that, first, we divide nodes
of directed graph into different groups. In order to balance
the loads, each processor node should share almost the same
number of nodes. Each processor node maintains a minimum
priority queue which is related to the set of vertexes it cares
for and all of the minimum priority queues are based on the
relaxed heap. At the beginning, all processor nodes do the
initial operation. Then each processor does find-min on its
priority queue. Then the smallest of all the priority queue
minima is found by doing a parallel minimum computation.
Then we mark the node with the minimum value and the
node number and the minimum value are broadcast to all
processor nodes. The processor node containing the
minimum value will do decrease operation on its priority
queue. Each processor node will do relaxation operation. The
above steps will be repeated to the end. The main framework
is shown in Figure 5.

We now analyze the time complexity. Supposed p is the
number of processors, n is the number of vertexes, and m is
the number of edges. First is initial operation, the time of
computing all the value of array d is O(n) in the worst case
which means s connects to all vertexes and the time of
creating relaxed heaps is O(p log (n/p)). Second, we need
two steps to analyze the time complexity of the main loop
operation. First, we consider the operations not involving the
priority queues. The processor communication time for n
minimum computations and n broadcasts is O(n log p). Take
the relaxation operation into consideration, all edges must be
traversed. So the time complexity is O(m/p) on average when

each processor gets almost the same number of edges. So the
total time complexity is O(n log p + m/p). Now consider the
time for priority queue operations, we need n executions of
find_min, delete and decrease. All of these operations use
time O(n log n + n log (n/p)). Considering the non-priority
queues operations, the parallel shortest path algorithm need
total time O(m/p + n log n).

Data Partition

Process 0

Init d[]

Make Heap

...

...

...

Process n

Init d[]

Make Heap

Process 0

Get the minimum
value of

priority queue

...

Process n

Get the minimum
value of

priority queue

Process 0

Relaxation
Operation

Update Priority
Queue

...

Process n

Relaxation
Operation

Update Priority
Queue

Reduce the global minimum value

Do the following operations until all nodes are marked

Figure 5. Framework of Parallel Shortest Path Algorithm

III. RESULTS

We need two steps to do the experiments. First we create
an original directed graph under the one-dimensional line
model, then create a new directed graph using the graph
division algorithm and store the new graph into file. These
steps don’t involve parallel computing. Second we use our
parallel shortest path algorithm to get the shortest path of

(a) Initial
foreach v in V do

 d[v] = MAX
end

 d[s] = 0
 Creat(Q,V)
 while IsEmpty(Q) != NULL do

(b) ExtractMin(Q)
 u in Q and d[u] = min{d[v], v in Q}
 (c) Relax
 foreach (u,v) in E do
 if d[u] + c(u,v) < d[v] then
 d[v] = d[u] + c(u,v)
 Update(Q,v)
 endif
 end
end

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1237

graph which is stored in file. The parallel environment is
based on MPI under Intel(R) Core(TM)2 Quad CPU Q8300
@ 2.5GHz with 2G storage. The results are shown in Table 1.

TABLE I. RESULTS

Buffer
Num

After Graph Division Serial
Time(s)

Parallel
Time(s)

Speed-
up Vertex

Num
Edge Num

50 9324 95814 0.055 0.04 1.375
100 146675 2843186 1.21 0.63 1.92
110 217141 4611721 2.02 0.94 2.14
120 310943 7186600 3.14 1.48 2.18
130 432960 10822831 4.89 2.16 2.26
140 588458 15825762 6.68 2.82 2.36

The results show that our shortest path algorithm is very

stable under the 4-core CPU and with the increase of the
number of buffers the speedup becomes more obvious.

IV. CONCLUSION

In this paper, we showed a buffer insertion technique
under one-dimensional line model and made a detailed
analysis of the graph division. We also gave a new data
structure called relaxed heap which has a very low time

bounds and came up with a parallel shortest path algorithm
based on relaxed heap. We made experimental simulation to
test our algorithm. The results show our algorithm is very
efficient especially under great number of buffers, so this
algorithm has a wide range of applications. Our parallel
algorithm is based on the serial Dijkstra algorithm, in fact,
there are many good parallel algorithms which are not based
on Dijkstra. So how to improve the efficiency of parallel
algorithm needs to be further discussed [5].

REFERENCES
[1] Liang Deng, Martin D. F. Wong: Buffer Insertion Under Process

Variations for Delay Minimization

[2] JAMES R. DRISCOLL, HAROLD N. GABOW, RUTH
SHRAIRMAN, and ROBERT E. TARJAN: Relaxed Heaps: An
Alternative to Fibonacci Heaps with Applications to Parallel
Computation

[3] Liang Deng, Martin D. F. Wong: An Exact Algorithm for the
Statistical Shortest Path Problem

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein: Introduction to Algorithms

[5] Ulrich Meyer, Peter Sanders: Delta-Stepping: A Parallel Single
Source Shortest Path Algorithm

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1238

