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Abstract—This paper addresses processing of 
spectrophotometric array signals based on genetic algorithms 
(GA) least square support vector machines (LS-SVM) 
regression to provide a powerful model for machine learning 
and data mining. The key to complete LS-SVM regression is to 
choose its optimal parameters. Due to their outstanding ability 
in solving global optimization problems in complex 
multidimensional search space, GA are used in this study to 
obtain the optimal parameter combination of the LS-SVM 
model. Experimental results showed the GA-LS-SVM method 
to be successful for simultaneous multicomponent 
determination even where severe overlap of spectra was 
present.   
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 Nowadays, with the application of photometric diode 
array detector and computers, rapid scanning commercial 
spectrophotometers are capable of quickly generating huge 
data consisting of hundreds and even thousands of 
absorbance values per spectrum. The array data named full-
spectrum contain sufficient information to be able to 
determine the contents of various compounds. The main 
drawback of ultraviolet-visible (UV-VIS) is its poor 
selectivity because in many cases UV-VIS spectra display 
strong overlaps, especially some less specific and selective 
chromagenic reagents often give rise to strongly overlapped 
spectra in many cases. The combination of artificial 
intelligence methods with the computer-controlled 
spectrophotometers was proven to be effective in 
overcoming this difficulty [1-3]. Artificial neural network 
(ANN) is a form of artificial intelligence that mathematically 
simulates biological nervous system [4, 5].  However, ANN 
often has slow convergence, is prone to the existence of 
many local minima during training, and has a tendency of 
overfitting. Recently, a promising technology called support 
vector machines (SVM) has been used for classification and 
regression problems. SVM pioneered by Vapnik is a kind of 
machine learning method based on modern statistical 
learning theory and has notable properties including absence 
of local minima and high generalization ability [6, 7].  
Suykens and his coworkers [8] introduced a modified version 
of SVM called least square SVM (LS-SVM) ， which 
requires solving a set of linear equations instead of a 

quadratic programming problem and is much easier and 
computationally simpler than SVM. SVM and LS-SVM 
represent relatively recent artificial intelligence method and 
have found some applications in image analysis, 
classification and disease diagnosis etc. [9, 10]. It is worth 
mentioning that the success of LS-SVM model is highly 
dependent on the optimum choice of two parameters, the 

relative weight of regression error γ  and the kernel width σ  
of radial basis function (RBF).   Genetic algorithms (GA) [11, 
12] introduced by John Holland are probabilistic 
optimization techniques based on natural evolution and 
genetics and Darwin’s theory of survival of the best.  With 
their efficient and robust global search ability, GA are used 
to search two optimal parameters for the LS-SVM model 
simultaneously and automatically. The LS-SVM model then 
performs the regression task using these optimal parameters. 

I. THERY         

A.   Support Vector Machine Regression 

The original theory of SVM introduced by Vapnik was a 
valuable tool for solving pattern recognition and 
classification problems [6, 10]. The basic idea of SVM is to 
map the data set X into a higher dimensional feature space F 
via non-linear mapping Φ and then perform linear regression 
in the hyperspace. Vapnik expanded the concept of SVM and 
developed support vector machine regression (SVMR) by 
introducing an alternative cost function.  In general, SVMR 
involves a solution of a quadratic programming problem. 
With the help of the Lagrange multiplier method and a 
quadratic programming algorithm, the constrained 
optimization problem is solved. For the details of SVM and 
SVMR algorithm please refer to the reference of this paper 
[6, 7, 10].  

B. Least squares support vector machines 

Considering a regression data set x and a dependent 
data set y, the LS-SVM method always fits a linear 
relationship shown in Eq. (1): 

bwxy +=                                                           (1)  
The optimization problem is to minimize the cost 
function (J) 
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subject to: 
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The first part of the cost function is weight decay, which is 
used to regularize weight sizes and penalize quadratically 
large weights to make them converge to smaller values in 
order to avoid deteriorating the generalization ability of the 
SVM. The second part of the cost function is the regression 
error (ei ) for all the n training objects. The parameter γ  is 
the regularization parameter, which indicates the relative 
weight of the error term as compared to the first part, and 
must be optimized by the user. Analyzing Eq. (7) and its 
restriction given by Eq. (8), a typical problem of convex 
optimization is formulated. Thus, the Lagrange function is 
used to solve this optimization problem. 

L(w, b, e,α ) =
2

1
w‖ ‖2 +γ 

=

n

i

e
1

i
2 

—
=

n

i 1

α i (wxi -b-ei-yi )                                                               

(4)  
In Eq. (4), the first two parts are the cost functions as 
defined earlier. The third part is the Lagrange term, 
which is multiplied by the so-called Lagrange multipliers 
(α i ). Each Lagrange multiplier corresponds to a certain 
training point. To obtain the final LS-SVM solution, the 
partial first derivatives of this Lagrangian function are 
obtained and are set to zero. 
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The weight coefficients w can be written as a linear 
combination of the Lagrange multipliers with the 
corresponding training objects (xi ): 
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From the equation, the Lagrange multipliers α  are 
calculated. By substituting α  and w into the original 
regression equation Eq.1, the following results are 
obtained: 

y = 
−

n

i 1

α i x
T
i x + b = 

=

n

i 1

α i<xi, x> + b                     (10)                 

The inner product < xi, x > can be changed by a kernel 
function k = Φ ( xi ) Φ (x ) to simplify the use of a mapping 
operation that is necessary to transform the non-linear input 
space to a high dimensional feature space where linear 

regression is possible. Thus, the mapped data are analyzed 
using conventional linear statistical analysis in the feature 
space, which is equivalent to nonlinear analysis in the 
original space. According to Mercer’s theorem, the resulting 
LS-SVM model can be expressed as: 

yi =
=

n

i 1

α ik ( x, xi ) + b                                                   (11) 

   The LS-SVM method can perform both linear and 
nonlinear multivariate calibrations rather rapidly. During 
the training of the LS-SVM model, it is only necessary to 
solve a set of linear equation， so the computational 
complexity is reduced.  

C.    Genetic algorithms 

 GA are a group of robust search and optimization 
techniques, which are based on principles of genetic and 
natural selection derived from the theories of biological 
evolution. GA mimic the evolution principle of survival of 
the best in natural genetic to seek solutions from vast search 
space at reasonable computation costs. In GA, the collection 
of variables whose values are to be optimized is termed a 
chromosome, and the individual variables are called genes. 
A set of chromosomes is named a population. The initial 
population of number of possible candidate solutions is 
generated randomly across the search space. In the 
population each chromosome has an associated fitness, the 
chromosomes are evaluated according to the fitness. A new 
population is formed using three genetic operators: selection, 
crossover and mutation to generate the offspring of the 
existing population with the best fitness. The main aim of 
GA is that the new population will be better than the old one. 
The optimal solution can be obtained after a series of 
iterative computations, which is known as generation.  The 
iterative evolution process terminates after a fixed number 
of generations or when a user-specified stop condition is 
achieved. Overview of the basic GA can be summarized 
briefly below:  
1. Population initialization 

An initial population is generated randomly across the 
search space. Each chromosome of the population is made 
by a set of genes and represents a candidate solution to the 
optimization problem.   
2. Evaluating fitness 

Once the population is initialized, the fitness value of 
each chromosome is evaluated by use of fitness function.   
3. Genetic operations: selection, crossover and mutation 

The GAs use selection, crossover and mutation 
operators to generate the offspring of the existing 
population.  
4. Stop standard 

 A fixed number of generations is used as stop 
criterion or a user-specified  fitness value, where the best 
fitness value has not been improved. 

D.  Genetic algorithms least square support vector 
machines (GA-LS-SVM) 

A hybrid method named genetic algorithms least square 
support vector machines (GA-LS-SVM), which combines 
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the advantages of genetic algorithms and least square 
support vector machines, is developed in this case. Two 
parameters, the relative weight of regression error γ  and 

the kernel width σ  of radial basis function (RBF) of LS-
SVM model are optimized simultaneously by the real-
valued GA (RGA) technique. When using RGA, unlike 
traditional binary GA (BGA), the two parameters of LS-
SVM model are directly coded to form chromosome X, 
which is symbolized as X= {P1, P2}, where P1 and P2 stand 
forγ  andσ , respectively. The chromosomes are evaluated 
according to the fitness function. Only the fitness function is 
problem-dependent and has to be carefully designed by user 
according to practical condition. In this case, the relative 
standard errors of prediction (RSEP) were used as the 
fitness function for evaluating the performances for each 
chromosome. The RSEP is given by Eq.12. 
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where ijC and ijĈ  are the actual and estimated 

concentrations, respectively, for the i-th component in the j-
th mixture, m is the number of mixtures, and n is the 
number of components. Based on the evaluation of fitness, a 
new population is formed using selection, crossover and 
mutation operators. In this case, roulette wheel algorithm is 
performed to selection operation. Scattered and Gaussian 
algorithms are used as crossover and mutation operations, 
respectively. The three evolution operations are iterative 
evolutionary process until a specified stop criteria is 
achieved. 

A program PGALSSVR was designed to perform the 
simultaneous spectrofluorimetric multicomponent 
determination.  

                 

II. EXPERIMENTAL AND METHODS 

A Shimadzu UV-240 spectrophotometers furnished with 
OPI-2 function was used for all experiments; a Lenovo 
Pentium IV microcomputer was used for all the calculations; 
pH measurements were made with a pH-3B digital pH meter 
with a glass-saturated calomel dual electrode.  Spectra were 
measured between 330 and 550 nm at 2 nm intervals after 15 
min, giving values at 108 wavelengths for each standard 
solution. An absorption matrix for calibration (D) was 
developed from these data. According to the same 
procedures an absorption matrix for prediction (Du) was also 
developed. 

III. RESULTS AND DISCUSSION 

A.    Genetic algorithm least square support vector machine 

In order to obtain the optimal LS-SVM model, two 
crucial problems are required to be solved: proper kernel 

function and optimal LS-SVM parameters. Currently, there 
are no systematic methods for the selection of kernel function. 
Several kernel functions, such as polynomial function, radial 
basis function and two-layer perceptions, have been proposed 
in literature. The radial basis function kernel that is a 
Guassian curve is commonly used. Only two parameters, the 

relative weight of regression error γ  and the kernel width σ  
of RBF, need to be selected. It is not known beforehand what 
values of the two parameters are suitable. However, there is 

no effective guideline for selecting the optimal values of γ  

and σ 2, so they must be set only by trial and error, depending 
on the problem and specific data. These usually used methods 
for searching the two parameters are time consuming and can 
not converge at the global optimization. Meanwhile, the two 
parameters cannot be optimized separately due to the strong 
interaction they exhibit. Thus, it is difficult for traditional 
methods to solve such problems. Because of its powerful 
global searching ability, GA is used to optimize automatically 
the two parameters in the proposed GA-LS-SVM method. 
Minimum and maximum values of the parameters are 

selected by the user; here, we select γ  values in the range of 

1-15000 and σ 2 in the range of`1-20000. According to the 
data, the initial population ranges are determined. The 
success of the GA optimization is affected by the 
configuration of proposed GA parameters. Since no general 
strategy exists to select GA parameters, they must be chosen 
by trial and error. After trial, the configuration of the 
proposed GA is selected. It is well-known that the quality of 

LS-SVM regression is dependent upon the parameters γ  and 
σ 2 to be selected correctly. The GA-LS-SVM model then 
performs the prediction using these selected optimal values. 
After implementing GA process, the optimal LS-SVM 
parameters are dynamically optimized. Finally the two 

parameters (γ = 14474 σ 2 = 3172) were selected by GA as 
optimal parameters simultaneously.  
A training set of 16 samples formed by the mixture of Fe (III), 
Co (II) and Cu (II) was designed according to four-level 
orthogonal array design with the L16 (45 ) matrix. Spectra 
were measured between 330 and 550 nm at 2 nm interval, 
giving values at 108 wavelengths for 16 standard samples. 
The experimental data obtained from the training set were 
arranged in matrix D, where each column corresponded to the 
absorbance of different mixtures at a given wavelength and 
each row represented the spectrum obtained at a given 
mixture. A set of 9 synthetic unknown samples was measured 
in the same way. Using LS-SVM method, the concentrations 
of Fe (III)，Co (II) and Cu (II) for the test set were calculated. 
The experimental results showed that the RSEP for total 
elements were 6.2 %.   

B.     A comparison of PLS, WT-PLS and GA-LS-SVM 

In order to evaluate the GA-LS-SVM method, three 
methods were tested in this study with a set of synthetic 
unknown samples.  The SEP and RSEP for the three methods 
are displayed in Table 1. The RSEP for total elements with 
GA-LS-SVM, WT-PLS and PLS were 6.2%, 7.9% and 10.3%, 
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respectively. These results indicate that GA-LS-SVM has the 
best performance among the three methods. The reason may 
be that the raw data have some nonlinear problem deviating 
from the Beer-Lambert law, and the LS-SVM method is 
capable of dealing with both linear and nonlinear problems. 
Therefore, in this case, the method based on LS-SVM is 
better than the method based on PLS. The results 
demonstrated that the GA-LS-SVM method performed well 
and is a promising technique.   

IV. CONCLUSION   

The genetic algorithm least square support vector 
machines (GA-LS-SVM) regression can provide an 
intelligent predictive model for multicomponent 
spectrophotometric determination. The GA-LS-SVM method 
is proven to be successful even when severe spectral overlap 
was present, and in this case performed better than the 
WTPLS and PLS methods.  
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TABLE I.  SEP AND RSEP VALUES FOR FE(III), CO(II) AND CU(II) SYSTEM BY THE THREE METHODS 

Method 

SEP (10-5 mol l-1) RSEP (%) 

Fe(III) Co(II) Cu(II) 
Total 

 elements
Fe(III) Co(II) Cu(II) 

Total 
 elements 

GA-LS-
SVM 

0.13 0.46 0.08 0.28 3.1 9.1 1.9 6.2 

WT-PLS 0.16 0.58 0.22 0.37 3.5 11.4 5.1 7.9 

PLS 0.14 0.78 0.25 0.48 3.2 15.4 5.6 10.3 
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