
A Parallel AC Algorithm Based on SPMD for Intrusion Detection System

Xiong Su
Department of Computer Science

and Engineering
Harbin Institute of Technology

Harbin, China
hit_suxiong@163.com

Zhenzhou Ji
Department of Computer Science

and Engineering
Harbin Institute of Technology

Harbin, China
jzz@pact518.hit.edu.cn

Xiaoyang Lian
Department of Computer Science

and Engineering
Harbin Institute of Technology

Harbin, China
lianxiaoyang.happy@163.com

Abstract—AC algorithm, as a multi-pattern matching
algorithm, plays an important role in the intrusion detection
system. The efficiency of the pattern matching algorithm
directly affects the overall efficiency of the intrusion detection
system. But the number of the growing intrusion features and
demanding for rapid detection put forward a new challenge to
the efficiency of the pattern matching algorithm. In this paper,
by analyzing the potential parallelism of the AC algorithm and
using SPMD method, we design a parallel AC algorithm based
on multi-core processors. The experiment shows that the
parallel AC algorithm can greatly improve the efficiency of
intrusion detection.

Keywords-AC Algorithm; Parallel; SPMD; Intrusion
Detection System; multi-core processors

I. INTRODUCTION

In the field of network security, intrusion detection
system [1] is an important means of detecting network
attacks. There are two common models [3] intrusion
detection system. One is the anomaly detection model,
another is misuse detection model. In the misuse detection
model, we should establish the intrusion feature database
firstly, and then compare the processed data-stream from the
network interface with intrusion features from the database.
If the intrusion feature is matched, the data-stream contains
attacks. If not, the data-stream is safe.

The misuse detection model mainly uses pattern
matching algorithm to make comparison with intrusion
features in the database. And the comparison needs to be a
real-time performance. So, it’s import to improve the
efficiency of the pattern matching algorithm. AC algorithm
[2] [4], the BM algorithm [5] and WM algorithm [6] [7] are
often used in the misuse detection model. But in the face of
the environment of multi-core processors and cluster [8] [9],
the algorithm’s efficiency is still not good enough. The
purpose of this paper is to put forward a parallel AC
algorithm to improve the efficiency of the pattern matching
algorithm.

II. CLASSICAL AC ALGORITHM

The classical AC algorithm includes preprocessing
process and matching process two parts. In preprocessing
process, we need to build Goto function, Failure function and
Output function. In matching process, we need to build
pattern matching function.

At first, we define pattern-set as patterns = {p1, p2, p3, …,
pr}, pi is a text string pattern; and we define text string to be
matched as TEXT = {t1t2t3…tn}, ti is an ASCII character.

A. Goto function

Goto function is a function that creates DFA for pattern-
set patterns. The implementation of the function is as follows:
(1) Create state 0
(2) Create DFA for p1, p2, p3, …, pr
(3) If not exist Goto(0,x), then 0Goto(0,x), here x is an

ASCII character
The implementation of creating DFA for pi = {a1a2a3…am}

as follows:
(1) 0state; j=1
(2) While Goto(state,aj) exists

Goto(state,aj) state; j + 1j
(3) For every ai from aj to am, create a new state for it
(4) As to last state of pi = statepi, piOutput(statepi)

B. Failure function

Failure function is a function that specifies which state
should be next state when Goto function cannot specifies the
next state. That is to say, the meaning of Failure(state1) =
state2 is that if Goto(state1, x) not exist, we should turn to
state2 for next step. And state2 has two principles: the first
principle is that at position of state1 and state2 in DFA, they
have the longest common suffix; the second principle is that
they have no common suffix, and in this principle the state2
must be 0.

The implementation of the function is a breadth-first
process. We define state 0 as tier 0. After that, we will build
the Failure function of next tier as follows:
(1) EN queue states of tier1 and set 0Failure(statei), here

statei is in tier 1
(2) DE queue one state, we define it as r
(3) EN queue states that are next states of r and in next tier

of r, and then according to the two principles, calculate
the Fairlure(r)s.

(4) Output(r)+Output(s)Output(r)
(5) If queue is not empty, turn to (2); If not, quit

C. Output function

Output function is a function that determines whether a
state is matched or not. Output(stateout) is a pattern-set, it
includes the patterns that should be matched at stateout. And
if Output(stateout) is null, text string TEXT is not matched at

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1281

stateout. The implementation of the function is contained in
Goto function and Failure function.

D. Search function

Search function is a function that finds patterns included
in pattern-set in text string TEXT. Later we will analyze and
improve the function.

III. PARALLEL AC ALGORITHM

SPMD is a single program multiple data parallel
implementation methods. In parallel AC algorithm, we use
same sub-search program to process different part of TEXT.

The implementation of Parallel AC algorithm includes
the design of main thread and sub-search thread.

A. Main thread

Fig. 1 shows the flow chart of main thread of parallel AC
algorithm.

Figure 1. This is main thread flow chart of parallel AC algorithm which
includes 5 main steps. And the step dividing TEXT is a most import step.

Main thread includes five steps. Step1 is Reading in
TEXT and Patterns. Step2 is creating global AC
preprocessing functions, and global preprocessing functions
are shared by all threads. Step3 is dividing TEXT. Step4 is
sending different data to different thread, and the function to
create thread in windows operation system is _beginthreadex.
Step5 is waiting for the end of all threads, the function is
waitforsingleobject. And the threads we create are all
searching threads.

In all steps of main thread, the most important step is how

to divide TEXT into nThreads. In this paper, we use an
overlap way to divide TEXT into nThreads parts. Every sub-
search thread K (K from 0 to nThreads-1) handles its own
sub-TEXT. The sub-TEXT includes two parts: the
independent part and overlap part. The reason why we
divide TEXT like this is to guarantee all positions in TEXT
should be searched. At the same time, in order to improve
the efficiency, the overlap part should be handled by only
adjacent two threads and because of that we must set a
maximum allowable number of threads. Fig.2 shows TEXT
is divided into nThreads parts; here nThreads is 4.The
division process of TEXT is as follows:
(1) Calculate the nmax. We define set N = {n1, n2, n3, …,

nr}. ni is the length of pattern pi.

max 1 2 3max{ , , ,..., }rn n n n n= (1)

(2) Calculate the nMaxThreads. nMaxThreads is the
maximum allowable number of threads. Tn is the length
of TEXT.

max

1nT
nMaxThreads

n

é ù
ê ú= -ê úê ú (2)

(3) Set nThreads. nThreads is the number of running
threads. nThreads is no more than nMaxThreads.

(4) Calculate the tOverlapLen, tIndependentLen and
tIndLen. tLen is the length of sub-TEXT. Here,
tIndependentLen is the length of independent
part(tIndLen for short). tOverlapLen is the length of
overlap part(tOlLen for short).

maxtOlLen n = (3)
(1)*nT nThreads tOlLen

tIndLen
nThreads

ê ú- -ê ú= ê úë û

 (4)

tLen tOlLen tIndLen = + (5)

(5) Calculate data interval for thread K.

[) ()
[) ()

K*tIndLen K*tIndLen+tLen

K*tIndLen

, 0 1

, 1n

T T K nThreads

T T K nThreads

< < −

= − (6)

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1282

Figure 2. This is an example about how to divide TEXT into 4 parts, so that 4 threads should be create for parallel searching the TEXT

B. Sub-search thread

Every sub-search thread searches its own sub-TEXT.
When searching independent part, it is the same as classical
AC search function, which searches and outputs the pattern
matched; when searching overlap part, the overlap part
would be searched, but not output. The sub-search algorithm
for thread 1 to nThreads-1 is as follows:

1 Begin
2 For Ti from Tstart to Tend:
3 Begin
4 while (Goto (state) == null and state != 0):
5 state = Failure(state)
6 state = Goto (state,Ti)
7 if Output(state) != null and i>start+tOlLen
8 store Output(state) and position i to Log file
9 End
10 End
Require special handling when K is thread 0. So,

Statement (7) need to be changed as follows:
7 if Output(state) != null

IV. EXPERIMENTS AND ANALYSIS

A. Test platform and data sets

Snort [1] - [3] is an open platform of Intrusion detection
system. The default pattern matching algorithm is the classic
AC algorithm. We use the parallel AC algorithm to replace it
and recompile it. And then we make a comparison in terms
of running time.

The experiment used a 1999DARPA [10] intrusion
detection data set [7] [11]. The data set is the simulation the
MIT Lincoln Lab collected for five consecutive weeks of
real network data. We intercept the tcpdump (about 202M)
of Monday of the fourth week to test the performance of

parallel AC algorithm. Experimental environment: CPU, the
Intel ® Core ™ 2 Quad 4-core processor; memory, 2G;
Compilers, VC6.0.

B. Analysis of Results

Fig. 3 shows the result of the experiments.

Figure 3. The picture shows results of the experiments, these are the

original data collected from platform

With Parallel AC algorithm, the efficiency of snort has at
least improved twice than classical AC algorithm. And the
speedup becomes larger with the increase of the number of
threads.

The ideal time complexity of the parallel AC algorithm is
O (tLen). But the actual running time is O (tLen) + timepara +
timesync. timepara is parallel cost, including the cost of creating
thread and the cost of destructing thread; timesync is
synchronization cost, including cost of writing the log file.
Therefore, the actual average speedups are 1.96, 2.16, 2.70
for 2 threads, 3threads and 4 threads, and the actual speedups
are less than the ideal speedups 2, 3, 4. In addition, the gap
between ideal speed and actual speedup is growing larger

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1283

with increase of the number of threads. Fig. 4 shows the
actual speedups.

Figure 4. These are speedups for 2,3,4 threads. The speedup for 4 threads

should be 4,but it’s even no more than 3

V. CONCLUSION

Computer multi-core system has become a trend, and
pattern matching algorithm which adapts to the environment
of multi-core can effectively improve the efficiency of
intrusion detection. This paper present a parallel multi-
pattern matching algorithm, based on SPMD, can greatly
improve the utilization of multi-core CPU and the efficiency
of the intrusion detection. In addition, multi-threaded shared
globally AC function, space complexity does not increase.
Overall, compared to classical AC algorithm, the parallel AC
algorithm has a larger optimization and can actually improve
the efficiency of the intrusion detection.

ACKNOWLEDGMENT

This paper is supported by the National Natural Science
Foundation of China, NO. 61173024.

REFERENCES
[1] ShuZheng Li, “The Rsearch of Fast Pattern Matching Algorithm

Based on Snort System,” JiLin University, 2009.4.

[2] Sun Qiang, Xin Yang, Chen Linshun, “Optimization and Application
of the AC Multiple Patterns String Match Algorithm,” Sciencepaper
Online, vol. 6, no. 1, pp. 45-48, 2011.

[3] KONG Dong-lin, LUO Xiang-yang, DENG Qi-hao,LUO Jun-yong,
“Reasearch on An Aho-Corasick Automaton Matching
Algorithmbased Intrusion Detection System,” Microelectronics and
Computer, vol. 23, nol. 8, pp. 89-95, 2006.

[4] Aho A, Corasick M, “Efficient String Matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333-343, 1975.

[5] Boyer R S, Moore J S, “A Fast String Searching Algorithm,”
Communication of the ACM, vol. 20, no. 10, pp. 762-772, 1997.

[6] WU Sun, MANBER U, A Fast Algorithm for Multi-pattern Searching,
Department of Computer Science, Chung-Cheng University, 1994.

[7] SONG Mingqiu, ZHANG Guoquan, DENG Guishi, “A New Multi-
pattern Matching Algorithm of Intrusion Detection,” Computer
Engineering, vol. 32, no. 5,pp. 144-146, 2006.

[8] HongWei Yu, “Research and Implementation of Effective Intrusion
Detection Based on Multi-core Processors,” University of Electronic
Science and Technology of China, 2009.

[9] LIU Yan-Heng, TIAN Da-Xin, YU Xue-Gang, WANG Jian, “Large-
Scale Network Intrusion Detection Algorithm Based on Distributed
Learning,” Journal of Software, vol. 19, no. 4, pp. 993-1003, 2009.

[10] R.Lippmann, J.Haines, D.Fried, J.Korba, K.Das, “ The 1999 DARPA
off-line Intrusion Detection Evaluation,” Computer Networks, vol. 34,
pp. 579-595.

[11] XU Hong, QIN Zhi-guang, “An Improved AC Algorithm for
Intrusion Detection,” Microelectronics and Computer, vol. 27, no. 11,
pp. 109-112, 2010

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1284

