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Abstract—Traditional bidirectional two-dimension (2D) 
principal component analysis ((2D)2PCA-L2) is sensitive to 
outliers because its objective function is the least squares 
criterion based on L2-norm. This paper proposes a simple but 
effective L1-norm-based bidirectional 2D principal component 
analysis ((2D)2PCA-L1), which jointly takes advantage of the 
merits of bidirectional 2D subspace learning and L1-norm-
based distance criterion. Experimental results on two popular 
face databases show that the proposed method is more robust 
to outliers than several methods based on principal component 
analysis in the fields of data compression and object 
recognition. 
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I.  INTRODUCTION 

Principal component analysis (PCA) [1] is a well-known 
method widely used in the areas of pattern recognition, 
computer vision and signal processing [2] [3]. Conventional 
PCA tries to learn a set of projection axes that maximize the 
L2-norm variance of training data. In one-dimensional PCA 
(termed as PCA-L2), input data, even such as image, must be 
scanned into a long vector so that the underlying structural 
information is destroyed. On the other hand, PCA-L2 must 
compute the eigenvectors of a large size covariance matrix 
because of a high-dimensional input space, which is very 
time-consuming. To overcome those shortcomings in image 
understanding, PCA-L2 is extended to two-dimension PCA 
(2DPCA-L2) by extracting principal components directly 
from two-dimension image matrices [4-6]. However, the 
main disadvantage of 2DPCA-L2 is that it needs much more 
feature dimensions for image representation than PCA-L2.  
Zhang and Zhou proposed the method called (2D)2PCA-L2 
which simultaneously adopts 2DPCA-L2 in the row and 
column directions of training images [7].  

However, PCA-L2, 2DPCA-L2 and (2D)2PCA-L2 are 
sensitive to outliers because their distance criterions are 
based on L2-norm. It is well known that the L1-norm is more 
robust to the presence of outliers than L2-norm [8-13]. 
Therefore, several PCA methods based on L1-norm have 
been developed to support robustness to outliers [11-13]. 
Among them, PCA-L1 [13] is a fast, robust and rotational 
invariant method which learns the local optimal projection 

axes by maximizing the L1-norm-based variance in the 
feature space. PCA-L1’s optimization algorithm is intuitive, 
simple and easy to implement. Li et al generalizes this 
algorithm to propose L1-norm-based 2DPCA (2DPCA-L1) 
which has lower reconstruction error than PCA-L1, PCA-L2 
and 2DPCA-L2 [14]. Motivated by the relationship between 
(2D)2PCA-L2 and 2DPCA-L2, we naturally generalizes 
2DPCA-L1 to (2D)2PCA-L1. The proposed method extracts 
the local optimal projection vectors based on maximization 
of the L1-norm-based variance simultaneously in the row 
and column directions of training images. The experimental 
results show the robustness of our proposed method to 
outliers in image reconstruction and object recognition. 

II. (2D)2PCA-L1 

Let Xi (i=1, … , N) denote N training image samples 
where the size of Xi is m n× . 2DPCA-L1 or alternative 
2DPCA-L1 only learns in row or column direction of 
training image samples respectively. 2DPCA-L1 learns an 

optimal projection matrix 1[ ] n d
d,..., ×′ ′ ′= ∈Q q q R  from 

the information between rows of training images, and then 

projects image m n×∈X R  onto ′Q  to gain a matrix 
m d×∈Y R . Alternative 2DPCA-L1 learns an optimal 

projection matrix 1[ ] m k
k,..., ×′ ′ ′= ∈P p p R  just from the 

information between columns of training images, and then 

projects image X  onto ′P  to gain a matrix k n×∈A R . We 
propose our method to project image X  onto ′P  and ′Q  
simultaneously, which is called L1-norm-based (2D)2PCA or 
(2D)2PCA-L1. 

A. 2DPCA-L1 

The 2DPCA-L1 method is a 2-D extension of PCA-L1. 

Let 1n×′∈q R  is the first projection vector which is the 

convergence result of iterations, so we can use ( )t′q  to 
denote the result of the tth iteration. Then, the projection of 

the original image m n
i

×∈X R  onto ′q  produces the 

corresponding feature 1m
i

×∈y R  as 
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where 1 n
ir

×∈x R  is the rth row vector of Xi. 

2DPCA-L1 aims at maximizing the L1-norm variance in 
low-dimensional feature space 

( ) 1
1 1 1

N N m

i ir
i i r

J
= = =

′ ′= = q y x q                  (2) 

Here, 
1

• denotes the L1-norm of a vector or a matrix. The 

optimal *q  is derived as the following: 

( ) 2
 subject  to =1* arg max J

′
′ ′=

q
q q q          (3) 

Here, 
2

• denotes the L2-norm of a vector or a matrix. The 

algorithm to solve (3) can be described as follows: 

1) Set t=0 and 
2

( ) ( )
ij

T
irt arg max′ =

x

q x , and rescale 

( )t′q  to unit length. 

2) Define one polarity function ( )irf t  as 

1      if ( ) 0
( )

1    if ( ) 0

ir

ir

ir

, t
f t

t

′ ≥=  ′− <

x q

x q
                      (4) 

3) Let ( 1)t′ +q  be updated by 

1 1

1 1 2
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The convergence of iteration equation (5) can be justified 
as in [14]. 

4) If ( )( )1J t′ +q = ( )( )J t′q , then stop the iteration 

and set ( )* t′=q q . Otherwise, go to Step 2. 

5) Output *q . 

When the first optimal projection vector 1′q  is attained, 

we can compute s′q , with s>1, by updating the training 

samples by  

( )1 1
1 1 1 1

Ts s s
ir ir ir s s ,i , ,N ,r , ,m− −

− −′ ′= − = =x x x q q   (6) 

It can be proven that s′q  is orthogonal to 1s−′q  as described 

in [14]. 

B. Alternative 2DPCA-L1 

We can also use 2DPCA-L1 learning in the column 
direction of images called alternative 2DPCA-L1. Similarly, 

alternative 2DPCA-L1 aims at maximizing the L1-norm 
variance in low-dimensional feature space projected from the 

column vectors of image samples. Let 1m
ic

×∈x R  is the cth 

column vector of Xi, and 1m* ×∈p R  is the optimal 
projection vector in the column direction, which can be 
computed by 

( ) ( )

( )
1

2
1 1

    subject  to 1

N
T

i
i

N n
T

ic
i c

* arg max J arg max

arg max

′ ′ =

′ = =

′ ′= =

′ ′= =





p p

p

p p p X

p x p

        (7) 

The algorithm to solve (7) is similar to the solution of (3). 

Similarly, when the first optimal projection vector 1′p  is 

attained, we can compute s′p , with s>1, by updating the 

training samples by 

( )1 1
1 1 1 1

Ts s s
ic ic s ic s ,i , ,N ,c , ,n− −

− −′ ′= − = =x x p x p   (8) 

Similarly, s′p  is orthogonal to -1s′p . 

C.  (2D)2PCA-L1 

(2D)2PCA-L1 aims to project image X  onto ′P  and 
′Q  in the row and column directions of training images 

simultaneously. Firstly, we can respectively gain the 
projection matrices ′P  and ′Q  as described in 
aforementioned two subsections. Then, any original image 
X  can be projected to yield a k by d matrix ′Z  as 

( )T′ ′ ′Z = P XQ                                (9) 

The matrix ′Z  is also called the feature matrix of the 
original image X  in image representation. Similarly, the 
image X  can be reconstructed by 

( )Tˆ ′ ′ ′=X P Z Q                            (10) 

The reconstruction error can be computed by  

( )
2 2

=
Tˆe ′ ′ ′= − −X X X P Z Q               (11) 

In object recognition, each training image samples Xi 
(i=1, … , N) is firstly projected onto both ′P  and ′Q  

simultaneously to obtain the feature matrix i′Z  (i=1, … , N). 

Secondly, let X be a given image sample for recognition and 
then get its feature matrix ′Z  similarly by projecting it onto 
both ′P  and ′Q  simultaneously. Lastly, an Euclidean 
distance based nearest neighbor classifier [15] is used for 
object classification. Here, the distance between ′Z  and i′Z  

is defined as following 

( ) ( ) ( )( )2

2
1 1

k d
s ,t s ,t

i i i
s t

d
= =

′ ′ ′ ′ ′ ′= − = −Z , Z Z Z z z  (17) 
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III. EXPERIMENTAL RESULTS 

In this section, we experimentally compare our proposed 
(2D)2PCA-L1 with (2D)2PCA-L2, 2DPCA-L2, 2DPCA-L1, 
PCA-L2 and PCA-L1 on two well-known face databases: 
ORL face database [16] and Yale face database [17]. We 
note that (2D)2PCA-L1, (2D)2PCA-L2, 2DPCA-L1 and 
2DPCA-L2 are image-as-matrix methods, while PCA-L1 and 
PCA-L2 are image-as-vector methods. Therefore, the 
performances of those methods are compared on the basis of 
the same total size of feature vectors or matrices for the 
fairness. Generally, subspace learning algorithms can be 
used for data compression, object recognition, image 
retrieval, and other applications [14]. In this paper, Yale 
database is used to test the performance of image 
compression and ORL database is used to test the 
performance of object recognition when random outliers are 
present in the training dataset. In addition, all experiments 
are executed on a computer system of Intel T2350 1.86GHz 
and 1GB RAM with Matlab 7.9. 

A.  Face reconstruction on Yale face database 

 
(a) 

 
(b) 

Figure 1.  Average reconstruction error versus the size of feature vectors 
or matrices on Yale database. 

In order to compare the performances of different 
methods in terms of image compression, we give the average 
reconstructed error of inliers for objective evaluation when 
outliers are present in the training data as in [13] and [14]. 
The experiments are carried on Yale face database which 
includes 165 grayscale images of 15 individuals. All images 
are normalized so that the ground truth positions of the two 
eyes and mouth are the same. Then, every image is cropped 
and scaled to 100×100 size. In addition, among 165 images, 
20 percent were randomly selected as outliers by being 
occluded with a random rectangular noise. The rectangle 
consists of back or white dots in random distribution, its 
location in image is random and its sizes range from 15×10 
to 60×60. For fairness, the results of all methods must be on 
the basis of the same feature size. Among these six methods, 
2DPCA-L2 and 2DPCA-L1 are special because the size of 
their features must be the multiple of 100. Therefore, we 
partition the comparing results into two groups. Fig. 1 (a) 
shows the average reconstruction errors of the following 
methods: PCA-L2, PCA-L1, (2D)2PCA-L2 and (2D)2PCA-
L1 versus the feature size. And, Fig. 1 (b) shows the average 
reconstruction errors of the following methods: 2DPCA-L2, 
2DPCA-L1 and (2D)2PCA-L1 versus the feature size. 
Obviously, it can be found that the average reconstruction 
error of (2D)2PCA-L1 is lower than those of the other five 
methods. In image compression, the results show that 
(2D)2PCA-L1 is the most robust to the outliers. 

B. Face recognition on ORL face database 

 
Figure 2.  Some samples with occlusion in ORL database. 

TABLE I.  AVERAGE OPTIMAL RECOGNITION RATES (%) AND ITS 
STANDARD DEVIATION ON ORL DATABASE 

Methods 2 Training 
Samples 

3 Training 
Samples 

4 Training 
Samples 

5 Training 
Samples 

PCA-L2 75.75±2.94 82.79±2.82 86.71±2.11 90.55±1.48

PCA-L1 74.38±3.05 83.86±1.50 86.58±2.85 91.05±1.54

2DPCA-L2 82.46±3.26 88.17±2.20 91.86±1.72 93.55±1.62

2DPCA-L1 82.75±3.18 88.60±2.18 92.06±1.59 93.65±1.49

(2D)2PCA-L2 83.60±3.34 89.24±2.12 92.92±1.67 95.10±1.43

(2D)2PCA-L1 83.79±3.19 89.55±2.09 93.11±1.84 95.20±1.53

This part compares the performance of these six methods 
on ORL face database in the field of object recognition. The 
ORL database includes 400 images of 40 persons, every 
person providing 10 different images with the size of 112×
92. All images are gray with 256 levels and some images 
were taken at different time [18]. In our experiment, the 
grayscale images are not preprocessed, except that 20 
percent of these 400 images are randomly selected to be 
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added rectangle noise which is generated as in subsection 
III.A. Fig. 2 shows some samples with occlusion as outliers. 
We compare the optimal recognition rates of these six 
methods with different number of training samples. The k 
(=2 3, 4, 5) training samples are randomly selected from each 
subject’s 10 images and the remaining images of every 
subject are used as the test data. The experiments are 
repeated fifteen times with each special training sample 
number. We record the optimal recognition rates of each 
method. Then, the average optimal recognition rate and its 
standard deviation are calculated and Table 1 gives the 
results. From Table 1, we can conclude that the average 
optimal recognition rate of (2D)2PCA-L1 is slightly higher 
than that of (2D)2PCA-L2 but significantly higher than those 
of the other four methods .  

IV. CONLUSION 

In this paper, an L1-norm-based bidirectional two-
dimension principal component (termed as (2D)2PCA-L1) is 
proposed. (2D)2PCA-L1 learns the local optimal projection 
vectors based on maximization of the L1-norm-based 
variance simultaneously in the row and column directions of 
training images. (2D)2PCA-L1 jointly takes advantage of the 
merits of bidirectional 2D subspace learning and L1-norm 
distance criterion. In the fields of data compression and 
object recognition, the experimental results on two popular 
face databases have demonstrated the efficacy of the 
proposed (2D)2PCA-L1which is not only more robust to 
outliers but also uses less feature size than several algorithms 
based on principal component analysis.  
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