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Abstract—In fault diagnosis of circuit， fault diagnosis system 
using multi-sensor data fusion may not give reliable fault 
diagnosis result in cases when processing  on inconsistent data 
carry inconsistent. In order to deal with such problems, This 
paper has developed an analog-circuit fault diagnostic system 
based on transferable belief model (TBM) and K-nearest 
neighbor rule from TBM. The proposed system has the 
capability to detect and identify fault components in an analog 
electronic circuit by analyzing its working temperature and 
testable voltage. Using K-nearest neighbor(KNN) rule to 
process the working temperature of component drastically 
enhances the testable information for fault detect, satisfying 
the need of fusing data from distinct evidence sources. The 
experimental results show that this system performs 
significantly better in fault diagnosis of analog circuits due to 
the proposed techniques. 

Keywords-analog circuit; fault diagnosis; transferable belief 
model; k-nearest neighbor rule from TBM; fault location; data 
fusion 

I.  INTRODUCTION  

Analog fault diagnosis has been an active area of 
research since the mid-1970s with significant work carried 
out at the system, board, and chip level[1]-[3], and it 
remains crucial, particularly for rapidly developed mixed-
mode(analog and digital) circuits. 

While, multi-sensor data fusion system is an important 
component in many fields dealing with pattern recognition, 
identification and diagnosis for fault location. It is used with 
the hope that the aggregation of several sensors from testing 
different fault information of analog circuits achieves better 
results. Because of this, many works have already applied 
information fusion to signal process, engine fault diagnosis 
[4]-[5], fault diagnosis in circuit. The transferable belief 
model (TBM) is a model for the quantified representation of 
epistemic uncertainty and which can be a robot, an 
intelligent sensor, etc, and provides a highly flexible model 
to manage the uncertainty encountered in the multi-sensor 
data fusion problems. 

In the TBM framework, two main families of 
classifiers have also been defined [6]: 

• The TBM model-based classifier developed by 
Smets  based on the general Bayesian theorem, the 
extension of Bayes’ theorem in the TBM framework. 

• The TBM cased-based classifier developed by 
Denoeux and Smets, a nonparametric method akin to 

statistical cased-based classifiers such as the K-
nearest neighbor classification rule. 

The goal of this paper is to present a way to diagnose 
faulty component in analogues circuits based on transferable 
belief model. The diagnosing results show that this method 
can reduce the uncertainty of analog electronic components 
fault diagnosis, and exactly recognize the fault components. 

II. TRANSFERABLE BELIEF MODEL（TBM） 

In this section, we briefly regroup some basic of the 
belief function theory as explained in the transferable belief 
model (TBM). More details can be found in [7]-[8]. 

TBM characteristics 
TBM produces a quantitative degree of belief for each 

of the hypotheses from a set of all hypotheses ߗ (called the 
frame of discernment). In TBM, ߗ  consists of the three 
subsets: 

• A set of hypotheses known as possible (PH) 
• A sent of hypotheses known as impossible (IH) 
• A set of unknown hypotheses (UH) 

As soon as new evidence becomes available, 
hypotheses are redistributed among the three sets: 

• A hypothesis A is transferred from PH to IH if the 
evidence claims it is impossible; 

• A hypothesis A is transferred from UH to PH if the 
evidence suggests that it could be considered 
possible; 

• A hypothesis A is transferred from UH to IH if the 
evidence suggests that it is impossible. 

III. APPLICATION OF TBM TO FAULT DIAGNOSIS OF 

ANALOGUE CIRCUITS  

We show here that the fault diagnosis problem of 
circuits admits a similar solution when uncertainty is 
quantified by belief function, as in the transferable belief 
model. When applying the transferable belief model to 
multi-sensor information fusion, data obtained from sensor 
is the theory’s evidence, and it constitutes the belief 
function assignment of the object mode needed to be tested, 
represents a reliable degree of each hypothesis object mode, 
and each sensor forms an evident group. Multi-sensor 
information fusion amounts to combining several evident 
groups to form a new comprehensive evident group. That is 
to say, we can use the transferable belief model to produce 
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comprehensive and precise information for judging object 
mode. 

In this section, we use of TBM from section II and KNN 
classifier based on TBM framework which mentioned below 
for fault diagnosis of circuit. Flow chart of proposed fault 
detection method is shown in Fig.1. Two sensors measure 
accessible node voltage and temperature of component 
respectively. The voltage of each accessible node is obtained 
by using probes, the temperature of each component is 
measured by using a thermal image instrument. 

 

Fig.1 Flow chart of proposed fault detection method 

A. K-nearest neighbors classifiers based on TBM 
framework 

This method was originally introduced in [9]. It 
consists of considering each example of the training set as 
an item of evidence rewarding the class membership of a 
new vector to be classified. The strength of this evidence is 
assumed to depend on a measure of distance between 
feature vectors, which is accounted for by discounting each 
item of evidence with a discount rate defined as a function 
of distance. A decision is made by assigning a pattern to the 
class with the maximum credibility by pignistic in TBM. 

Let ߗ ൌ ሼݓଵ,ݓଶ, … ெሽݓ,  denote the ܯ  classes. 
Considering ܺ	 to be classified and ψ୩ is the set of its K-
nearest neighbors in a training set ܶ. For any X୧ ∈ ψ୩, the 
knowledge that X୧  belongs to class w୯൫w୯ ∈ Ω൯  can be 
considered as a piece of evidence that increases our belief 
that X  also belongs to w୯ . This item of evidence can be 
represented by a BBA m୧ assigning a fraction ∂୯୧  of the unit 
mass to the singleton ൛w୯ൟ and the rest to Ω. m୧൫൛w୯ൟ൯ ൌ ∂୯୧          (1) m୧ሺΩሻ ൌ 1 െ ∂୯୧                 (2) 

With m୧ሺAሻ ൌ 0 for all A ⊆ Ω and A ∉ ቄΩ, ൛w୯ൟቅ. The 

mass ∂୯୧  is chosen as a decreasing function of Euclidean 
distance d୧ between X and X୧. ∂୯୧ ൌ ∂଴φ଴ሺd୧ሻ                (3) 

Where the index qindicates that the influence of dୱ,୧ 
may depend on the class of xୱ , the following additional 
conditions must be imposed on ∂଴ and φ଴: st:	0 ൏ α଴ ൏ 1				ϕ୯ሺ0ሻ ൌ 1											lim														ୢ→ஶ ϕ୯ሺdሻ ൌ 0              (4) 

We choose as: ߲௤௜ ൌ ߲଴݁݌ݔ൫െߛ௤ଶሺ݀ଶሻଶ൯             (5) 
Where ߛ௤ଶ a parameter is associated to class ݓ௤ and ߲଴ 

fixed parameter. The BBAs ݉ଵ,݉ଶ,… ,݉௞ corresponding to 
the K-nearest neighbors of ܺ can then be combined using 
TBM rule. We thus have  ݉ఆሼܥሽሺሼݓ௞ሽሻ ൌ ൫1 െ ߲௞௜ ൯∐ ߲௟௜								݇ ൌ 1,… ,݉௟ஷ௞      
(6) 

B. Application KNN classifier to fault diagnosis of analog 
circuit using working temperate of analog circuit  

In area of fault diagnosis of circuit, if there are some 
faults components in the system, voltage values will deviate 
from the normal range. When some components are faulty, 
generally speaking, their temperatures will changed (no 
matter increase or decrease), then we can test the 
temperature of each component, and calculate the 
correlation coefficient. The proposed fault detection method 
using the KNN rule is based on the idea that the trajectory 
of a normal sample of working temperature of component in 
circuit is similar to the trajectories of normal samples in the 
training data; on the other hand, the trajectory of a fault 
sample of working temperature of component must exhibit 
some deviation from the trajectories of normal training 
samples. In other words: 

• A fault sample’s distance to the nearest neighboring 
training samples must be greater than a normal 
sample’s distance to the nearest neighboring training 
sample. 

• The distance between one type fault sample and the 
same type fault training sample must be smaller than 
any distance between the fault sample and normal 
sample in the training data and distance between this 
type of fault sample and other type of fault sample in 
the training data. 

• The distance between normal sample and fault 
sample in training data also must be larger than the 
distance between normal sample and normal sample 
in the training data as well. 

Based on this principle provided above, the steps of 
fault location by working temperature of component are 
shown as fellow: 

• Model building: For each labeled sample ݔ௜ , 1 ൑ ݅ ൑ ݊ , finding K-nearest neighbors for each 
sample in the training data set. 

• Fault detection: For an incoming unclassified sample 
x, finding X’s K-nearest neighbors from the entire 
sample in training data set. 
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• Calculation the X’s KNN Euclidean distance ݀ 
between all the sample in the training data set and 
unclassified sample x. 

• Calculation all of ߲௤௜  and ݉ఆሼܥሽሺሼݓ௞ሽሻ  using 
formula (3) ~ (6) respectively. 

• Comparison with each ݉ఆሼܥሽሺሼݓ௞ሽሻ  and make a 
decision by pignistic. 

IV. THE FAULT DIAGNOSIS OF THE ANALOGUE CIRCUIT 

In this experiment, two example of fault diagnosis of 
analog circuit as shown in Fig.2 are investigated using the 
proposed diagnosis method. In Fig.2, S2 Part indicates a low-
pass filter with all components having standard tolerances. 
S1 Part indicates a band-pass filter with all components 
having standard tolerances which are shown in Fig 3. 

 
Fig.2   PCB under test 

 Fig.3 Band-pass filter circuit under test 

The same fault diagnosis technique was then applied to 
a more complex circuit (see Fig.2 Part S1). The principle of 
this circuit is indicated in Fig.3. In this case, R5OC, R8OC, R13, 
R24 and R14&R24 were considered to be potentially faulty 
elements. The circuit signature is constructed with the same 
procedure designed for the circuit. Considering the 
following faults. 

• Training data: 
Single faults:  ---W1(R5OC),W2(R4OC); 
Normal:   ---W3(normal); 
Soft faults: ---W4(R24),W5(R13); 

---W6(R14 and R24); 
• Test data:       

Test1:   R13;Test2: R5OC; 
Test3: R14&R24; 

Diagnosing the faults for the band-pass filter requires a 
neural network with five inputs, 16 first-layer and 5 output-

layer neurons. The number of output neurons includes one 
for the no-fault class. This neural network also requires a 
training set of size 10 for each fault class under one frequent. 
To form the fault training data, the faulty component values 
have been extracted from the uniform distribution defined in 
the intervals ሾ0.1ܺ௡; ሺ1 െ ሻܺ௡ሿݐ  and 	ሾሺ1 ൅ ;ሻܺ௡ݐ 10ܺ௡; ሿ , 
where ݐ is the tolerance range and ܺ௡ is the nominal value 
of the circuit element. 

Our study of this circuit indicates that the neural 
network and KNN classification rule can’t distinguish 
between the Normal and R4OC fault classes. The reason 
Normal and R4OC fault classes are indistinguishable is 
because they produce similar outputs. An inspection of this 
circuit reveals that these two fault classes have transfer 
functions in which corresponding terms are different by at 
most 6% assuming nominal values. As a result, based on 
features extracted from the output node, we can’t separate 
Normal and R4OC fault classes. 

From the step mentioned in Section ΙΙΙ Part B, the 
detail of the distance between Test2, Test3 and each point of 
training group is provided in TABLE 1. Using formula (6), 
we get ݉ఆሼܥሽሺሼݓ௞ሽሻ	ሺ݇ ൌ 1,… ,6ሻ.The result is shown in 
TABLE 2. For example, using data from TABLE 1 and 
formula (6), we gets the results shown as follows: mஐሼtest2ሽሾሺw଺ሻሿ ൌ ሺ1 െ 0.6178ሻ ൈ 0.7244 ൈ 0.7790 ൈ																																						0.5793 ൈ0.7244ൈ 0.0268 																																	ൌ 0.0024 

The other data can get by the same method. 
 

TABLE 1. ELCLIDEAN DISTANCE BETWEEN TEST2 AND EACH 
TEATURE SAMPLE 

Distance 1khz Distance 1khz 

Test2 → W1 

Test2 → W2 

Test2 → W3 

Test2 → W4 

Test2 → W5 

Test2 → W6 

0.0268 

0.7244 

0.5793 

0.7790 

0.7137 

0.6178 

Test3 → W1 

Test3 → W2 

Test3 → W3 

Test3 → W4 

Test3 → W5 

Test3 → W6 

0.4932 

0.5847 

0.6252 

0.4317 

0.7074 

0.0590 
TABLE 2. PROBABILITY OF TEST2 AND TEST3 INDUCE ON EACH 

FAULT SINGLETONS ݉ఆሼ2ݐݏ݁ݐሽ 1khz ݉ఆሼ3ݐݏ݁ݐሽ 1khz ݉ఆሼ2ݐݏ݁ݐሽሾሺݓ଺ሻሿ݉ఆሼ2ݐݏ݁ݐሽሾሺݓଶሻሿ݉ఆሼ2ݐݏ݁ݐሽሾሺݓଷሻሿ݉ఆሼ2ݐݏ݁ݐሽሾሺݓସሻሿ݉ఆሼ2ݐݏ݁ݐሽሾሺݓହሻሿ݉ఆሼ2ݐݏ݁ݐሽሾሺݓଵሻሿܯఆሼ2ݐݏ݁ݐሽሾሺߠሻሿ

0.0024 

0.0015 

0.0028 

0.0011 

0.0015 

0.1403 

0.0039 

݉ఆሼ3ݐݏ݁ݐሽሾሺݓଵሻሿ݉ఆሼ3ݐݏ݁ݐሽሾሺݓଶሻሿ݉ఆሼ3ݐݏ݁ݐሽሾሺݓଷሻሿ݉ఆሼ3ݐݏ݁ݐሽሾሺݓସሻሿ݉ఆሼ3ݐݏ݁ݐሽሾሺݓହሻሿ݉ఆሼ3ݐݏ݁ݐሽሾሺݓ଺ሻሿܯఆሼ3ݐݏ݁ݐሽሾሺߠሻሿ

0.0033 

0.0023 

0.0019 

0.0043 

0.0013 

0.0518 

0.0032 

TABLE 3. NORMALIZE PROBALITY OF TEST2 AND TEST3 
INDUCE ON EACH FAULT SINGLETONS ݉ఆሼ2ݐݏ݁ݐሽ 1khz ݉ఆሼ3ݐݏ݁ݐሽ 1khz
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݉ఆሼ2ݐݏ݁ݐሽሾሺݓ଺ሻሿ ݉ఆሼ2ݐݏ݁ݐሽሾሺݓଶሻሿ ݉ఆሼ2ݐݏ݁ݐሽሾሺݓଷሻሿ ݉ఆሼ2ݐݏ݁ݐሽሾሺݓସሻሿ ݉ఆሼ2ݐݏ݁ݐሽሾሺݓହሻሿ ܯఆሼ2ݐݏ݁ݐሽሾሺߠሻሿ ݉ఆሼ2ݐݏ݁ݐሽሾሺݓଵሻሿ 

0.0156 

0.0098 

0.0182 

0.0072 

0.0098 

0.0254 

0.9140 

݉ఆሼ3ݐݏ݁ݐሽሾሺݓଵሻሿ ݉ఆሼ3ݐݏ݁ݐሽሾሺݓଶሻሿ ݉ఆሼ3ݐݏ݁ݐሽሾሺݓଷሻሿ ݉ఆሼ3ݐݏ݁ݐሽሾሺݓସሻሿ ݉ఆሼ3ݐݏ݁ݐሽሾሺݓହሻሿ ܯఆሼ3ݐݏ݁ݐሽሾሺߠሻሿ ݉ఆሼ3ݐݏ݁ݐሽሾሺݓ଺ሻሿ 

0.0485 

0.0338 

0.0279 

0.0632 

0.0191 

0.0470 

0.7606 

 

TABLE 4. CLASSIFICATION RESULTS WITH PROPOSED METHOD 

Fault 
component 

Accuracy by low-
frequent neural 
network （%） 

Accuracy by high-
frequent neural 
network（%） 

Diagnosis 
accuracy by KNN 

classify（%） 

Fusion  diagnosing 
results based on  D-

S rule（%） 

Fusion  diagnosing 
results based on 

proposed method
（%） 

R24 

R13 

R14&R24 

R5OC 

71.6% 

79.7% 

67.4% 

70.1% 

64.2% 

50.7% 

76.4% 

64.5% 

89.5% 

92.3% 

81.5% 

95.7% 

73.7% 

69.8% 

77.9% 

73.7% 

81.3% 

78.9% 

81.7% 

89.5% 

Table 3 shows the detailed performance of K-nearest 
neighbor classification rule in diagnosing hard fault R5OC 
and multi fault R14&R24. Each column in this table 
corresponds to one fault class. Such result indicates the 
proposed KNN method can successfully identify the fault 
location. Comparing with BP network and KNN 
classification rule, K-nearest neighbor classification rule by 
component temperature is more effective than BP network 
by accessible node voltage if:  

• The class of each fault in the learning set class is 
known precisely and categorically. For example, 
KNN classification rule is more effective when 
single hard fault happened for the reason that 
learning set class of hard fault is easier to be known 
and extracted precisely and categorically. Table 3 
shows this result that the accuracy rate of hard fault 
diagnosis is much higher than soft fault.  

• The learning sample can cover with all class of each 
fault in the learning set.  

According to the formal fusion algorithm and KNN 
fault judgment rules based on component temperature, we 
can get final fusion diagnosis results shown in Table 4 

Using the above fusion algorithm and fault judgment 
rules discussed in the previous section, we have studied the 
fault diagnosis of real sample circuits in Fig.7 and Fig.8. 
Table 4 shows the detailed performance of our fusion 
system in diagnosing the 5 fault classes associated with the 
five band-pass filter. Also in this case, a comparison among 
different methods is shown, a comparison among Dempster-
Shafer methods is shown, and each row in this table 
corresponds to one fault class. Different columns then 
indicate the values of accuracy rate of diagnosis result. For 
example, the second and third columns of the table are 
respectively shows the rate of accuracy value of each 
components based on BP network by voltage sensors. The 
fifth and sixth columns show the accuracy of fault diagnosis 
after Dempster-Shafer evidence theory and transferable 
belief model. 

Table 4 shows distinctly that the result by the single 
sensor can’t identify the fault component correctly, but 

using fusion technique the synthetic diagnosis result can 
identify the fault component exactly. In the example, 
component R13 is the real fault component, the diagnosis 
accuracy from BP network is 50.79%, so we can’t decide 
the fault component. But after transferable belief model 
fusion technique, the fault diagnosis accuracy increase 
significantly, and therefore we can point out the fault 
component correctly. In other words, the transferable belief 
model fusion algorithm makes the uncertainty of the 
diagnosis system decrease effectively, and error diagnosis 
has been removed from the inadequacy of single sensor 
information. This proves that our analog fault diagnostic 
system generalizes well and is capable of reliable 
performance using a small training set. 
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