
The parameter’s MCMC estimation of HMMs with transition density function 

Chengwen Zhu, Yu Ge, Lina Lu, Zhang Tian, Chuizhen Zeng 
Wuhan Ordnancy Non-commissioned Officer Academy of PLA 

Wuhan, China 
e-mail:chengwen_zhu@yeah.net 

 
 

Abstract—The parameter estimation of HMM is critical to all 
its applications. The classic B-W algorithm is not flexible with 
the initial parameters and is easy to fall into the local optimal 
solution. Bayes estimation of it makes posterior risk 
minimization, and make full use of the experience, history 
information and other information other than samples, is 
useful in many cases. Employs the great computational power 
of MCMC, the MCMC estimation of HMM parameter can be 
more effective. 
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I.  INTRODUCTION 

HMM (Hidden Markov Models), which were brought 
forward by Baum and others in the late sixties of the 
twentieth century, are the most successful statistical 
modeling ideas that have came up in the last forty years. It 
has been widely used in many different areas such as speech 
recognition, anomaly detection and computational biology. 
The use of hidden (or unobservable) status  makes the model 
generic enough to handle a variety of complex real-world 
time series, while the relatively simple prior dependence 
structure still allows for the use of efficient computational 
procedures. 

Theoretically speaking, HMM need address three issues: 
identification problems, hidden state estimation and 
parameter estimation problems. They are issues form the 
theoretical basis of HMM, and are often inseparable in 
practice. The parameter estimation, that via the statistical 
calculations of sample set to adjust the model parameters to 
find the most suitable parameters, is the most difficult one 
compared to the other two, and generally, there is no best 
way to solve it. Usually, the structure of HMM is very 
complex, this limits the use of the least square method and 
moment method which are most commonly used in statistics. 
But we can use maximum likelihood method, transforming 
parameter estimation into seeking the extreme points of the 
Log-likelihood function. 

The B-W algorithm using the EM algorithm to seeking 
the extreme points of the Log-likelihood function, lies on the 
calculation of the posterior distribution of hidden status .The 
E steps and M steps of B-W algorithm all have analytical 
solutions (standard EM algorithm) for HMMs with simple 
structure, but it’s difficult and can only be solved by 
approximate calculation in general, such as MCEM (E step 
using the Monte Carlo method), SAEM (E step stochastic 
approximation method), SEM (Stochastic EM). 

To treat HMM parameter estimation as a statistical 
decision problem, maximum likelihood is not the only option; 
the posterior risk minimization (often referred to as the 
Bayes decision criteria) is also commonly used. Usually, 
Bayes estimates can be attributed to integral calculation of 
the posterior distribution. The integration can be calculated 
directly or using the normal approximation, numerical 
integration, static Monte Carlo method if the posterior 
distribution is relatively simple. But when posterior 
distribution is a complex, high-dimensional, non-standard, 
all these methods are difficult to implement. Markov chain 
Monte Carlo methods (MCMC) can solve this effectively. 

This dissertation discusses the parameter estimation of 
HMMs with transition density function from the point of 
view of Bayes statistics, using Bayes posterior risk 
minimization criterion instead of the maximum likelihood 
criteria, make a full use of the priori information, and 
employs the great computational power of MCMC, 
programming a MCMC algorithm of HMM parameters 
estimation. 

II. HMM WITH TRANSITION DENSITY FUNCTION 

Let ( , )  and ( , )   be two measurable spaces. Q is a 
Markov kernel on ( , )  , G is a transition kernel 
from( , )  to ( , )  , ν is a probability measure on ( , )  ,T is a 
Markov transition kernel contented formula(1). Then The 
Markov chain { } 0

( , )k k k
X Y

≥  with transition kernel T  and initial 
distribution Gν ⊗ is called a hidden Markov model, simply 
referred to as HMM. 

[( , ), ] ( , ) ( , )
D

T x y C Q x dx G x dy′ ′ ′=  , ( , ) ,x y C∈ × ∈ ⊗          (1) 

The integration region in formula (1) is:  
{ }{ }( , ) : ( , ) 0D C x y G x y= ≠ . 

If there exists a probability measure μ  on ( , )  , a 
probability measure λ on ( , )  , such that μ λ  and 

x∀ ∈ , ( , )G x μ⋅  , ( , )Q x λ⋅  , then the transition kernel T  must 
have a density function and there must exists transition 
density function ( , )q x ⋅ and ( , )g x ⋅  that  A∀ ∈ , B∀ ∈ , 

( , ) ( , ) ( )
A

Q x A q x x dxλ′ ′=  , ( , ) ( , ) ( )
B

G x B g x y dyμ=  ,and the transition 
kernelT can be written as:  

[( , ), ] ( , ) ( , ) ( ( , ))
D

T x y C q x x g x y d x yλ μ′ ′ ′ ′ ′= ⊗                  (2) 

In formula (2) { }( , ) , , ( , ) : ( , ) 0x y C D C x y g x y∈ × ∈ ⊗ = ≠    .  
[( , ), ( , )] ( , ) ( , )t x y x y q x x g y y′ ′ ′ ′  is called the transition 

density function of T . If the transition kernel of a HMM has 
transition density function, said the HMM has transition 
density function. This dissertation only discusses HMMs 
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which has a transition density function, and will no longer 
special instructions below.  

III. HMM PARAMETER’S PRIORI DISTRIBUTION 

Assume   is finite and 
2

2

( )1
( , ; ) exp

22
i

ii

i x
i i

xx

y
g x y

μ
θ

σπσ
 − = − 
  

, 

in mind { }1, ,r=  , 1 2( , , , )rμ μ μ μ=  , 1 2( , , , )rσ σ σ =  ,use the 
notation 0π  to denote the probability density function of the 
initial state 0X  (with respect to ν ). Then the HMM can be 
signified by its parameters 0( , , , )Qθ π μ=  ． In mind θ ’s 
Value space as Θ . 

Given θ ,the density function of 0: 0:( , )n nX Y (respect 

to ( 1)n nν λ μ⊗ ⊗ +⊗ ⊗ )is: 

0: 0: 0 0 0 0 11
( , ; ) ( ; ) ( , ; ) ( , ; ) ( , ; )

n

n n n i i i ii
f x y x g x y q x x g x yθ π θ θ θ θ−=

= ∏         (3) 

The greatest difference of Bayes statistics to classical 
statistical is it treat parameters as random variables, obtained 
the posterior distribution by the data and priori knowledge, 
and then makes a variety of statistical inference. Set the prior 
distribution density of θ  as ( )φ θ , according to Bayes formula, 
the posterior distribution density of θ  under the condition 
that 0: 0:( , )n nX Y is known is: 

0: 0:
0: 0: 0: 0:

0: 0:

( ) ( , ; )
( | , ) ( ) ( , ; )

( ) ( , ; )
n n n

n n n n n

n n n

f x y
x y f x y

f x y d

φ θ θϕ θ φ θ θ
φ θ θ θ

= ∝
       (4) 

In order to simplify the calculation, assume 

0 , , ,i i iQπ μ σ ( 1 2( , , , )T T T T
rQ Q Q Q=  ) are independent of each 

other, and select the prior distribution as its conjugate prior 
distribution, that: 

0 0 0( (1), , ( ))rπ π π=   obeying Dirichlet distribution 

1( , , )rD b b ; 
( ( ,1), , ( , )), 1, ,iQ q i q i r i r= =   obeying Dirichlet distribution  

1( , , )i irD e e ; 

iμ  obeying normal distribution 2( , )i iN m s ; 
2
iσ  obeying Inverse gamma distribution ( , )i iIG u w . 

IV. HMM PARAMETER’S MCMC ESTIMATION 

In the case of known 0: 0:( , )n nX Y , we can yields the posterior 
distribution of the parametersθ  by formula (3)、 (4), and 
then obtain its Bayes estimation. But we do not know the 
hidden state 0:n

X , this is a typical problem of missing data, 

and can use augmented sampling methods to solve this kind 
of problems. Set the joint conditional density of 0:nX andθ  

about { }0: 0:n nY y= as 0: 0:( , | )n nx yθϕ , if we can obtain θ ’s 

conditional density 0: 0:( | , )n nx yϕ θ and 0:nX ’s conditional 

density 0: 0:( | , )n nx yϕ θ , then we can estimate θ . Similar to 
formula (4), according to Bayes formula: 

0:

0: 0:
0: 0:

0: 0:

( ) ( , ; )
( , | )

( ) ( , ; )
n

n n n
n n

n n nx

f x y
x y

f x y d
θ

ϕ θ θϕ
ϕ θ θ θ

Θ

=
             (6) 

According to formula (3), (4) 
 

0: 0:( | , )n nx yϕ θ   

0 0 0 0 11
( ) ( ; ) ( , ; ) ( , ; ) ( , ; )

n

i i i ii
x g x y q x x g x yφ θ π θ θ θ θ−=

∝ ∏              (7) 

0: 0: 0: | 0: 0:( | , ) ( | ; )n n n n n nx y x yϕ θ ϕ θ=  

0 0 0 0 11
( ; ) ( , ; ) ( , ; ) ( , ; )

n

i i i ii
x g x y q x x g x yπ θ θ θ θ−=

∝ ∏  (8) 

Use formula (7)、 (8), obtained the MCMC sampling 
process for HMM parameters estimation: 

(1) Given initial (0)θ , (0)
0:nx , and sign 1t = ; 

(2) Sample ( )
0:
t
nx from ( 1)

0: 0:( | , )t
n nx yϕ θ − ; 

(3) Sample ( )tθ  from ( )
0: 0:( | , )t

n nx yϕ θ , and then set 1t t= + , 
return(2). 

Obviously 
( 1) ( 1) ( 1)

0: 0: 0: ( 1): 0:1
( | , ) ( | , ) ( | , , )

nt t t
n n n n n k n k n nk

x y x y x x yϕ θ ϕ θ ϕ θ− − −
− − +=

= ∏    (9) 

If we can obtain samples from ( 1)
( 1): 0:( | , , )t

n k n k n nx x yϕ θ −
− − + , 

0, , 1k n= −  and  ( 1)
0:( | , )t

n nx yϕ θ −  , the problem has been 
solved. In formula (9) 

( 1)
( 1): 0:( | , , )t

k k n nx x yϕ θ −
+  

0 1

( 1)
0 ( 1): 0:, ,

( , , | , , )
k

t
k k n nx x

x x x yϕ θ
−

−
+= 

  

0 1

( 1)
0 ( 1): 0:, ,

( , , , | , )
k

t
k k n nx x

x x x yϕ θ
−

−
+∝ 

  
( 1) ( 1) ( 1)

1 1 1 | 0:( , ; ) ( , ; ) ( | ; )t t t
k k k k k k k kq x x g x y x yθ θ ϕ θ− − −

+ + +∝  
( 1)

, 1| 1 1 0: 1( , | ; )t
k k k k k kx x yϕ θ −

+ + + +∝  

0 1

( 1) ( 1)
0: 0 0:, ,

( | , ) ( , , | , )
n

t t
n n n nx x

x y x x yϕ θ ϕ θ
−

− −= 
  
( 1)

| 0:( | ; )t
n n n nx yϕ θ −=  

Employ algorithm A In reference [4], 
( 1)

, 1| 1 1 0: 1( , | ; )t
k k k k k kx x yϕ θ −

+ + + + , 0, , 1k n= − and ( 1)
| 0:( | ; )t

nn n nx yϕ θ −  
can be obtained recursively, and then we can easily get 
samples form ( 1)

0:( | , )t
n nx yϕ θ − and ( 1)

( 1): 0:( | , , )t
n k n k n nx x yϕ θ −

− − + , 

0, , 1k n= − , that is just the sample ( )
0:
t
nx  from 

( 1)
0: 0:( | , )t

n nx yϕ θ − . 
Combined with algorithm A in reference [4], given the 

Forward-Backward algorithm here: 
(i) Forward calculation 

0

( 1) ( 1) ( 1) ( 1)
0 0 0 0 0 0( ) ( ; ) ( ; ) ( , ; )t t t t

x
c L y x g x yθ θ π θ θ− − − −= = , 

( 1) 1 ( 1) ( 1)
0|0 0 0 0 0 0 0 0( | ; ) ( ; ) ( , ; )t t tx y c x g x yϕ θ π θ θ− − − −= , 0x ∈ ; 

For 0, , 1k n= − , calculated the following expression in 
turn 

1

( 1) ( 1) ( 1) ( 1)
1 1 1 1 | 0:( ) ( , ; ) ( , ; ) ( | ; )

k k

t t t t
k k k k k k k k kx x

c q x x g x y x yθ θ θ ϕ θ
+

− − − −
+ + + +=  , 

( ) 1( 1) ( 1) ( 1) ( 1)
1| 1 1 0: 1 1 | 0: 1 1 1( | ; ) ( | ; ) ( , ; ) ( , ; )

k

t t t t
k k k k k kk k k k k k kx

x y c x y qx x g x yϕ θ ϕ θ θ θ−− − − −
+ + + + + + + +=  , 

( ) 1( 1) ( 1) ( 1) ( 1)
, 1| 1 1 0: 1 1 | 0: 1 1 1( , | ; ) ( | ; ) ( , ; ) ( , ; )t t t t

k k k k k k k kk k k k k k kx x y c x y qx x g x yϕ θ ϕ θ θ θ−− − − −
+ + + + + + + += , 

where 1,k kx x + ∈; 
(ii) Backward sampling 

Sample ( )t
nx from ( 1)

| 0:( | ; )t
n n n nx yϕ θ − ; 
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For 1, , 0k n= −  , sample ( )t
kx  from 

( ) ( 1)
, 1| 1 1 0: 1( , | ; )t t

k k k k k kx x yϕ θ −
+ + + +   in turn. 

Note ( )
0 0: 0:( ) ( , , , ) ( | , )t

n np p Q x yθ π μ ϕ θ=  = . Because the 
dimensions of θ is relatively high, it’s difficult to sample ( )tθ  
from ( )p θ  directly. As we had assumed 0 , , ,i i iQπ μ σ are 
independent of each other, Gibbs sampling can be used:  

(i)   Sample ( )
0
tπ from ( 1) ( 1) ( 1)

0( | , , )t t tp Qπ μ− − − ; 

(ii) For 1, ,i r=   , Sample ( )t
iQ from  

( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1)
0 1 1 1( | , , , , , , , , )t t t t t t t

i i i rp Q Q Q Q Qπ μ− − − −
− +   ; 

(iii) For 1, ,i r=   , Sample ( )t
iμ  from 

( ) ( ) ( ) ( ) ( 1) ( 1) ( 1)
0 1 1 1( | , , , , , , , , )t t t t t t t

i i i rp Qμ π μ μ μ μ− − −
− +   ; 

(iv) For 1, ,i r=   , Sample ( )t
iσ from 

2 ( ) ( ) ( ) ( ) ( ) ( 1) ( 1)
0 1 1 1( | , , , , , , , , )t t t t t t t

i i i rp Qσ π μ σ σ σ σ− −
− +  . 

As we have chosen conjugate priors, the conditional 
distribution of the above is easily obtained, after a simple 
calculation we can get the following conclusions: 

(i) ( ) ( )
0 0

( )
0 1 ,1 ,

( , , )t t

t
rx x r

D b bπ δ δ+ +  , ( )
0

( )
0
( ),
0

1,

0,
t

t

tx i

x i

x i
δ

 =
=  ≠

; 

(ii)  ( )
1 1( , , )t

i i i ir irQ D e n e n+ +  , { } { }

1
( ) ( )

1
0

( ) ( )
n

t t
ij k ki j

k

n x x
−

+
=

= Ι Ι ; 

(iii)  

( ) 2( , )t
i i iN m sμ   ,

{ }

{ }

2 ( ) ( 1) 2

0

2 ( ) ( 1) 2

0

( ) ( )

( ) ( )

n t t
i k k i iik

i n t t
i k iik

s y x m
m

s x

σ

σ

−
=

−
=

Ι +
=

Ι +



 ,

{ }

2 ( 1) 2
2

2 ( ) ( 1) 2

0

( )

( ) ( )

t
i i

i n t t
i k iik

s
s

s x

σ
σ

−

−
=

=
Ι +

 ;  

(iv)  
( ) 2( ) ( , )t
i i iIG u wσ   , { }

( ) 2 ( )

0

1
( ) ( )

2

n t t
i i k i kik

w w y xμ
=

= + − Ι ,

{ }
( )

0

1
( )

2

n t
i i kik

u u x
=

= + Ι ． 

Up to now, we have solved the sampling of step (2) and 
(3), and are able to get HMM parameter’s estimates. 

HMM parameter’s MCMC estimate: 

(i) Given the initials ( )(0) (0)

0: ,nx θ , and the length T of the 

chain need to generate; 

(ii) For 1, 2, ,t T=  , sample ( )
0:
t
nx from ( 1)

0: 0:( | , )t
n nx yϕ θ − and 

sample ( )tθ  from ( )
0: 0:( | , )t

n nx yϕ θ ; 

(iii) Obtain a certain parameter iθ ’s Bayes 

estimation ( )

1

1ˆ n t
nm it mn m

θ θ
= +

=
−   

It’s easy to prove that { }( ) ( )
0:( , ), 1,2, ,t t

nx t Tθ =  yield from 

the algorithm above is a Markov chain. From the sampling 
process of the algorithm, we know the transition kernel from 

( ) ( )
0:( , )t t

nx θ to ( 1) ( 1)
0:( , )t t

nx θ+ + is: 
( 1) ( 1) ( 1) ( )

0: 0: 0: 0:( | , ) ( | , )t t t t
n n n nx y x yϕ θ ϕ θ+ + + . 

As we selected θ ’s conjugate prior, the algorithm 
marginal distribution of ( 1)tθ + which produced in the iterative 
process has a fixed form, so 

( )
0:

( 1) ( 1) ( 1) ( ) ( ) ( ) ( )
0: 0: 0: 0: 0: 0:

( 1) ( 1) ( 1) ( ) ( ) ( )
0: 0: 0: 0: 0:

( | , ) ( | , ) ( , | )

( | , ) ( | , ) ( | )

t
n

t t t t t t t
n n n n n nx

t t t t t t
n n n n n

x y x y x y d

x y x y y d

ϕ θ ϕ θ ϕ θ θ

ϕ θ ϕ θ ϕ θ θ

+ + +

Θ

+ + +

Θ
=

 


 

( 1) ( 1) ( 1) ( 1) ( 1)
0: 0: 0: 0: 0: 0:( | , ) ( | ) ( , | )t t t t t

n n n n n nx y x y x yϕ θ ϕ ϕ θ+ + + + += =    (10) 

Formula (10) told us 0: 0:( , | )n nx yθϕ is the stationary 
distribution of transition kernel 

( 1) ( 1) ( 1) ( )
0: 0: 0: 0:( | , ) ( | , )t t t t

n n n nx y x yϕ θ ϕ θ+ + + , which means 

0: 0:( , | )n nx yθϕ is the stationary distribution of Markov 

chain { }( ) ( )
0:( , ), 1,2, ,t t

nx t Tθ =  . It is difficult to consider the 

convergence properties of { }( ) ( )
0:( , ), 1,2, ,t t

nx t Tθ =  directly. 

However, the algorithm uses augmented sampling methods, 
so only need to establish the convergence properties of one 
of the boundary chains, to obtain convergence properties of 
the joint chain. Here consider the convergence properties of 

the boundary chain{ }( )
0: , 1, 2, ,t

nx t T=  . 

The marginal distribution density function of 0:nX  about 

{ }0: 0:n nY y=  is: 

| 0: 0: 0: 0:( | ) ( , | )x y n n n nx y x y dθϕ ϕ θ
Θ

=   

0:

0: 0:

0: 0:

( ) ( , ; )

( ) ( , ; )
n

n n n

n n nx

f x y
d

f x y d

φ θ θ θ
φ θ θ θΘ

Θ

=     .           (11) 

And the transition kernel from ( )
0:
t
nx to ( 1)

0:
t
nx + is: 

( 1) ( ) ( ) ( ) ( 1) ( ) ( )
0: 0: 0: 0: 0: 0:( | ) ( | , ) ( | , )t t t t t t t

x n n n n n nK x x x y x y dϕ θ ϕ θ θ+ +

Θ
=  .   (12) 

According to formula (11)、(12) 

( )
0:

( )
0:

( 1) ( ) ( )
0: 0: | 0: 0:

( ) ( ) ( 1) ( ) ( )
0: 0: 0: 0:

( | ) ( | )

( | , ) ( | , )

t
n

t
n

t t t
x n n x y n nx

t t t t t
n n n nx

K x x x y

x y x y d

ϕ

ϕ θ ϕ θ θ

+

+

Θ
=


 

 

0:

( )
0: 0:

0: 0:

( ) ( , ; )

( ) ( , ; )
n

t
n n n

n n nx

f x y d

f x y d

φ θ θ θ

φ θ θ θ
Θ

Θ


 

 

0:

( ) ( 1) ( ) ( )
0: 0:

0: 0:

( ) ( , ; )

( ) ( , ; )
n

t t t t
n n n

n n nx

f x y

f x y d

dφ θ θ θ

φ θ θ θ

+

Θ

Θ

= 
 

 

( 1)
| 0: 0:( | )t

x y n nx yϕ += ． 

So | 0: 0:( | )x y n nx yϕ is the stationary distribution of transition 

kernel ( 1) ( )
0: 0:( | )t t

x n nK x x+ , which means | 0: 0:( | )x y n nx yϕ is the 

stationary distribution of boundary chain{ }( )
0: , 1, 2, ,t

nx t T=  . 

Note ( )
| 0: 0:( | )t

x y n nx yϕ as ( )
0:
t
nx ’s marginal distribution, if 

{ }( )
0: , 1, 2, ,t

nx t T=  is irreducible and aperiodic, 
( )
| 0: 0:( | )t

x y n nx yϕ will convergence to stationary distributions at 

Geometric rate in variation distance. That means, there exist 
0 1r< < and 0c > , cause 

0:

( ) ( )
| 0: | 0: | 0: 0: | 0: 0:( | ) ( | ) ( | ) ( | )

n

t t t
x y n x y n x y n n x y n nx

y y x y x y crϕ ϕ ϕ ϕ⋅ − ⋅ − ≤ . 

So it is only need to prove the boundary chain 

{ }( )
0: , 1,2, ,t

nx t T=  is irreducible and aperiodic, to prove the 

convergence of the algorithm. 
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For any given ( 1) ( ) 1
0: 0:,t t n

n nx x− +∈ , According to formula 

(7)、(8) 
( ) ( ) ( 1) ( )

0: 0: 0: 0:( | , ) ( | , )t t t t
n n n nx y x yϕ θ ϕ θ+  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 11

( ) ( ; ) ( , ; ) ( , ; ) ( , ; )
nt t t t t t t t t t

i i i ii
x g x y q x x g x yφ θ π θ θ θ θ−=

 ∝  ∏  
( 1) ( ) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( )

0 0 0 0 11
( ; ) ( , ; ) ( , ; ) ( , ; )

nt t t t t t t t t
i i i ii

x g x y q x x g x yπ θ θ θ θ+ + + + +
−=

× ∏ . 

Obvious, ( )tθ∀ ∈ Θ and ( )( ) 0tφ θ > ,
( ) ( ) ( 1) ( )

0 00
( , ; ) ( , ; ) 0

n t t t t
i ii

g x y g x yθ θ+
=

>∏ . So the measure of the 

collection { }0 ( ) ( ) ( ) ( 1) ( )
0: 0: 0: 0:: ( | , ) ( | , ) 0t t t t t

n n n nx y x yθ ϕ θ ϕ θ+Θ = > must be 

greater than 0, and then ( 1) ( )
0: 0:( | ) 0t t

x n nK x x+ > . Therefore, any 
two state of 1n+ is one step reachable, so 

{ }( )
0: , 1, 2, ,t

nx t T=  must be irreducible and aperiodic. 

The above described boundary chain { }( )
0: , 1, 2, ,t

nx t T=   is 

convergence, so the join chain { }( ) ( )
0:( , ), 1, 2, ,t t

nx t Tθ =  is 
convergence. Thus prove the reasonableness of the algorithm. 

V. SIMULATION TESTS AND CONCLUSIONS 

Now we test the algorithm proposed in the previous 
section. Generate a group of hidden status and corresponding 
observations with a length of 500 ( 499n = ) from a HMM 
where { }1,2,3= , 0 (0.1 0.8 0.1)π = , ( 3 0 3)μ = − , 

( 2 1 2)Σ = , ( ), ,(0.2 0.1 0.1) (0.7 0.8 0.7) (0.1 0.1 0.2)
T T T

Q = . 

Assume the hidden status and parameters are unknown, 
we need to obtain an estimate of the parameters. However, it 
is difficult to measure the gap between the estimated 
parameters and real parameters, as it is relatively complex. 
Therefore, we first obtain parameter estimation and then 
substituted into the Viterbi algorithm to get hidden status's 
estimation, and then make a proper evaluation. 

First, we get HMM parameters estimates by B-W 
algorithm, and then substituted it into the Viterbi algorithm; 
we get the estimates of ( 0, , )kX k n=  , as shown in the 
following figure. 
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Figer1  Hidden status estimates of “B-W algorithm +Viterbi 
algorithm” 

There are 44 error estimates In figer1, where “ｏ” signify 
the real hidden status, “ · ”signify the Hidden status 
estimates of “B-W algorithm +Viterbi algorithm”. 

Although section 4 had described theoretically the 
convergence of the algorithm, however, the speed of 

convergence and the time needed to reach equilibrium is still 
unknown. A variety of methods has been proposed in 
Literatures. Here we avoid the theoretical discussion, just 
generate several chains from different initial points to 
determine the time needed to reach equilibrium by observing 
the trajectory of these chains. Finally get the MCMC 
estimation of our HMM parameters, substituted it into the 
Viterbi algorithm, we get the estimates of ( 0, , )kX k n=  , as 
shown in the following figure. 
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Figer2  Hidden status estimates of “HMM parameter’s 
MCMC estimate +Viterbi algorithm” 

There are 40 error estimates in figer2, where “ｏ” signify 
the real hidden status, “ · ”signify the Hidden status 
estimates of “HMM parameter’s MCMC estimate +Viterbi 
algorithm”. 

From the simulation results of the above, we could see 
that “HMM parameter’s MCMC estimate +Viterbi 
algorithm” is effective than “B-W algorithm +Viterbi 
algorithm”. However, due to the use of MCMC, the time cost 
of the former is higher. The HMM of the present example is 
relatively simple, the B-W algorithm will be able to achieve 
good results, but in many cases B-W algorithms reach such 
good effects. When the data dimension is high, even be able 
to perform the B-W algorithm, the time cost is quite high, 
while the MCMC estimates has advantages, because of the 
MCMC method's strengths is dealing high-dimensional 
problems. 
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