
A proactive system reliability analysis framework of electric vehicles 

Xiaopin Zhong1, Wenwen Zeng2, Li Qiu1* 
1College of mechatronics and control engineering, Shenzhen university,  

2 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen university,  
Shenzhen, China, 

{xzhong, zengww, qiuli}@szu.edu.cn 
 
 

Abstract—System reliability analysis (SRA) is a core support 
technique of many applications in the entire product lifecycle 
of electric vehicle (EV). However, the large-scale 
industrialization needs an accurate SRA due to the features of 
complexity, coupling and unknown noise of an EV. Besides 
component failure, the latent failure of electrical motor, 
electrical control and other subsystems is more originated 
from the uncertain dependency between components and the 
uncertain logical structures of failure. In this article, a 
proactive framework is presented to perform SRA on EVs. 
This framework is theoretically based on the probabilistic 
graphical model. Failure logical structures can then be 
recognized by a structure learning process of graphical model. 
Other SRA tasks and fault diagnosis are converted to the 
problems of probabilistic inference with uncertainty. 
Simulation examples demonstrate the effectiveness of our 
proposed framework. 
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I. INTRODUCTION 

The development of Electric Vehicle (EV) is an 
important way to reduce pollution. Developed countries 
have started the mass production. For China, it is wise to 
improve the product reliability before EV’s mass production. 
Although a lot of methods for system reliability analysis 
(SRA) have been developed, traditional SRA strategies are 
not suitable for EVs for at least three unsolved problems.  

First, parametric distribution models are used in 
traditional representations. The assumption that the 
reliability data obeys a certain probabilistic distribution is 
often violated so that the robustness cannot be guaranteed. 
Second, traditional methods use deterministic logical 
structures of failure without considering “noisy gates” 
[1,2,13]. The logic gates are indeed noisy in EVs when exist 
unknown failure modes, uncertain parameters and unknown 
environmental influence. For this reason, the output 
densities from the failure logical structures are also uncertain. 
Third, traditional approaches remain to use fixed logical 
structures predefined by experts. It ignores the failure 
dependency between components in the same level. This is 
not realistic in EVs, e.g. the failure structure changes when 
the driving mode is changed.  

It is then crucial for SRA in EVs to proactively construct 
a reasonable failure logical structure and to represent this 
structure in a flexible way. Fortunately, researchers have 
found a versatile methodology to deal with the dependency 

description and the uncertain noisy gates over the last 
decade, i.e. probabilistic graphical model (PGM). The PGM 
have many advantages over the classical SRA formalisms 
due to the capacity of dependency description and of data 
incorporation. In addition, we can easily propagate the 
uncertainties in a PGM unlike in conventional logic models, 
e.g. fault trees and event trees. In this research, therefore, we 
use the PGM as the theoretical framework to unify all of the 
SRA tasks into the problems of PGM learning and inference.  

The published PGM studies applied to SRA are also 
known as Bayesian networks (BNs) [1,3]. They can be 
classified into mainly two categories according to the 
variable type. First, working state based BNs indicate the 
fail or work events defined in discrete space [4,5,6,11]. They 
estimate the distribution of system state deterministically by 
using conditional probability tables (CPTs) that is 
predefined and fixed. Second, time-to-failure (TTF) model 
based BNs assign a probabilistic description to TTF data of 
an item [7,8,9,12]. Although no CPT is needed, they do not 
consider the uncertainty of the model parameters. In our case, 
the PGM is a generalization of BNs. It is expected to capture 
the dependency between nodes in the same level.  

The paper is organized as follows. The proposed 
framework is introduced in the next section followed by 
simulation examples. We draw conclusion in the last section. 

II. PROACTIVE RELIABILITY ANALYSIS FRAMEWORK 

The proposed framework is illustrated in Figure. 2. A 
graphical model is employed to describe the failure logical 
structure of reliability data acquired. The reliability data, 
time-to-failure in our simulation case, is modeled by 
parametric statistical models and the failure structure can be 
actively learned through structure learning algorithm. In this 
framework, fault diagnosis and other SRA tasks are 
converted to the inference process of PGM. In this section, 
the four main phases involved in the framework are 
explained respectively.  
A. Data acquisition 

 
Figure 1. Data acquisition system 
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Figure 2. The proactive system reliability analysis framework. 

 
 

Inside an electric vehicle, there are plenty electronic 
control subsystems monitored by the electronic control unit 
(ECU) and connected by a CAN bus. This feature allows to 
easily obtain reliability data from the on-board diagnostic 
(OBD) system. In order to adapt the moving property, we 
extended a GSM module to the OBD system so that the data 
can be sent back in real time by GPRS commu-nication 
through internet, see in Figure 1 for the data acquisition 
framework. 

B. System reliability representation by graphical model 
A directed acyclic network is built from the 

corresponding fault tree (FT) by Bobbi’s method [1], see in 
Figure 3 for a simplest case.  
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Figure 3. A simplest example for converting a FT (a) to a 
BN (b) and graphical model (c) 

In our model, the network is undirected and the nodes 
denote the items’ failure parameters that are the function 
outputs of the noisy gates rather than the deterministic gates. 
We denote a note’s variable by iX , ni I∈ , where nI  is the 

label set of the notes. The time-to-failure (TTF) density is 

further denoted by ( )i if X , whose corresponding determi-

nistic density is ( )d

i if X . Notice that a higher probability 

should be assigned to an uncertain density that is closer to 
d

if . We thus assume the distance between the two densities 

obeys a zero mean normal distribution, i.e. 

( ) ( )( ), 0,d

i i i id f X f σ N  ,    
ni I∈ ,                (1) 

where iσ  is the standard deviation encoding the dependency 

between the parameters of the basic items and those of the 
higher level item. A number of techniques can be used to 
estimate this deviation, such as maximum likelihood 
estimation (MLE).  

Note that a distance cannot be negative. We further 
consider a one-sided normal distribution, i.e. 

( ) ( )2

2

( ),2
Pr ( ), = exp -

22

d

i i id

i i i i

ii

d f X f
d f X f σ

σπσ

 
    

 
.   (2) 

There are choices for the distance between densities after 
discretizing, such as Euclidean distance and city-block 
distance [17].  

For the deterministic density, it is in fact the output 
derived from the structure function. For a series structure, 
the system works only when all components function, i.e.  

( ) ( )( )
( )( ) \

= 1-d

i j j k k
j B i k B i j

f f x F x
∈ ∈

 ∏ ,    
ni I∈ ,         (3) 

where ( )B i  denotes the label set of node i ’s basic 

component nodes and ( )k kF X  is the cumulative probability 

of kX . For a parallel structure, the system works if any 

component functions, i.e. 

( ) ( )
( )( ) \

=d

i j j k k
j B i k B i j

f f x F x
∈ ∈

 ∏ ,       ni I∈ .                                                          (4)  

So far, we build a probabilistic graphical model with a 
detailed causal interpretation between the output parameters 
and those of basic items. 

C. Proactive structurization of failure logic 
It is not suitable for EVs to use the predefined failure 

structures for at least two reasons. First, the failure structure 
may change in EV-like complex systems. Second, it takes 
much time to define a failure structure and even experienced 
experts cannot guarantee the structure is correct. Therefore 
we turn to build the structure from the captured failure 
samples. It can be accomplished by data mining algorithms, 
such as K2 [10]. This allows the framework to adapt to the 
running mode of EVs. 

D. Fast inference 
After modeling, the network with continuous variables 

needs an approximate probabilistic reasoning process to 
calculate the posterior marginal probability of each item’s 
parameters. To reduce the computation burden is still a big 
topic, although many explored techniques give good approxi 
-mation, such as dynamic discretization and mixtures of 
truncated exponentials, the readers are referred to [14,15,16]. 
Compared with other methods, Markov chain Monte Carlo 
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(MCMC) is so far one of the mostly used techniques. It is 
suitable for the non-parametric densities employed in our 
model and some toolboxes can be easily applied. To make it 
converge faster, one of our future works is to consider an 
artificial-intelligence based MCMC, so called evolved 
MCMC.  

III. SIMULATION EXAMPLES 

In this section, we demonstrate simulations on the 
simplest model shown in Figure 3.  Without loss of genera-

lity, we assume that AX , BX  and CX  denote the failure rate 

of three components. Their actual values are given as 
0.105 , 0.68  and 0.785  respectively. Hundreds of i.i.d. 
observations can then be sampled from the corresponding 
exponential distribution of TTF.  

If the data is modeled only by one-parameter (failure rate) 
exponential distribution, we evaluate respectively the 
normalized likelihoods and the marginal posteriors of each 
node. The results as well as 90% confidence interval of 
reliability are shown in Figure 4. If the basic nodes (A and B) 
are modeled by exponential distributions and that of the 
node C is modeled by a two parameter Weibull distribution. 

The results of the likelihood and the marginal posterior are 
shown in Figure 5. 

We can observe the marginal probabilities have 
estimates (estimated by minimum mean square estimation or 
maximum a posterior) closer to the actual values than the 
likelihoods do. It demonstrates that the inference process 
gives a “better” guess of model parameters. This confirms 
the effectiveness of our framework.  

IV. CONCLUSIONS 

This is a preliminary attempt to unify the tasks of system 
reliability analysis into a probabilistic graphical model. In 
the framework, we model the time-to-failure of components 
by the parametric distributions with random parameters. 
Their uncertainties learned from samples can be propagated 
within the network so that the reliability estimation, 
sensitivity analysis, fault diagnosis are all converted to the 
inference process of graphical model. This is demonstrated 
in the simulation examples. The proposed framework also 
allows us to construct the system’s failure structure without 
intervention of experts who are expensive and make 
mistakes from time to time. The future work is to consider 
nonparametric statistical models in the framework. 

 

(a)                                                                                            (b) 

 

(c)                                                                                            (d) 

Figure 4. Normalized likelihood and marginal posterior of the three nodes’ failure rates. The solid lines stands for the likelihoods; the dash-dot lines 
represent the posteriors and the dashed lines for the actual values. (d) shows the 90% confidence interval of reliability by the posterior mean.  
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(a)                                                                                            (b) 

 
(c)                                                                                            (d) 

Figure 5. Likelihood and marginal posterior of 
2

X  with respect to Weibull parameters (shape and 1/scale). The blue lines indicate the actual values.
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