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Abstract—A novel just-in-time kernel modeling method is 
proposed to online fault detection and diagnosis for chemical 
processes. The model parameters can be suitably selected using 
a fast cross-validation strategy. For a query sample, an online 
kernel classifier is constructed adaptively in a just-in-time 
manner for mode identification, i.e., fault detection and 
diagnosis, using the most relevant samples around it. The 
superiority of the proposed kernel classifier is demonstrated 
through a simulated chemical example, compared with the 
related method with fixed parameters.  
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I.  INTRODUCTION 

Data-driven fault detection and diagnosis for chemical 
processes has attracted much attention because they are 
relatively more suitable for industrial applications. Specially, 
in the last two decades, various multivariate statistical 
process monitoring (MSPM) methods have been widely 
applied to chemical processes [1-6]. However, most of them 
use only the nominal operating data for modeling, and thus 
other diagnostic tools are applied for fault diagnosis. 
Furthermore, MSPM approaches have a strong statistical 
requirement and linearity assumption, greatly limiting their 
applications. Other types of data-driven process diagnosis 
approaches include, but are not limited to, neural networks, 
support vector machines, Gaussian process regression, 
pattern recognition, and fuzzy theory [7-10]. These methods 
can incorporate fault monitoring and diagnosis together 
because the fault information can generally be used in a 
supervised manner. However, they are typically problem 
specified and require that the designer be fairly familiar with 
the flow sheet of a process [11]. 

Recently, a new multiclass classification scheme for 
process fault diagnosis was developed, resulting in a unified 
solution to both process monitoring and diagnosis. That is, a 
single kernel learning (KL) algorithm can be applied 
simultaneously to both the modeling and diagnosis tasks [11]. 
The obtained results showed that it is a promising method for 
online fault detection and diagnosis. However, how to 
suitably select the model parameters, including the kernel 
parameter and the regularization parameter, is still unsolved. 
Additionally, only using a single global model, despite of its 
nonlinear modeling ability, is still difficult to describe the 
whole complex process. In this paper, a just-in-time kernel 
modeling method [12] is proposed to fault detection and 
diagnosis for chemical processes. The model parameters can 

be suitably selected using a fast cross-validation (CV) 
strategy [13, 14]. Consequently, for a query sample, an 
online kernel classifier is constructed adaptively for fault 
diagnosis using the most relevant samples around it.  

The remainder of this paper is so organized. The kernel 
classifier in a KL framework and its just-in-time strategy for 
online diagnosis are described in Section 2. The proposed 
method is illustrated by a simulated chemical reactor in 
Section 3. Finally, some conclusions are made in Section 4. 

II. JUST-IN-TIME KERNEL CLASSIFIER 

A. Kernel Classifier using a KL Framework 

The process modeling issue based on the KL framework 
can be described as such a problem where the aim is to learn 
a mapping f: X→Y using a modeling set S = {(x1, y1), …, (xk, 
yk)}⊂X×Y. As a temporal step, the KL method first maps the 
input data xi ∈ X implicitly into the feature space H by φ: 
X→H, where φ is a feature map associated with some 
positive definite kernel, i.e., the so called kernel trick: K(xi, 
xj)=<φ(xi), φ(xj)>H. The function f∈H is then determined in 
some optimal sense to yield the model [11-13]. A general 
form of the kernelized nonlinear model for process modeling 
can be formulated as [11]: 

 ( , , ) ( )T
i k k i i k i k iy f b e b eφ= + + +w x w x=  (1) 

where yi and ei denote the output measurement and the 
process noise at i instance, 1, ,i k=  ; and xi is a general 
input vector that is usually composed of several measured 
variables at time i, probably combined with their 
corresponding delayed forms and with the delayed outputs. 
The symbols wk and bk are the model parameter vector and 
the bias term from the k set data, respectively [12].  

When applied the philosophy of statistical learning 
theory and the least squares support vector regression 
(LSSVR) framework to Eq. (1), the following optimization 
problem is formulated [13]:  
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where T
1 2[ , , , ]k ke e e=e   is the approximation error. The 

formulation consists of equality constraints instead of 
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inequality constraints in the conventional SVR and takes into 
account a squared error with the regularization term. 
Therefore, this reformulation greatly simplifies a problem 
such that the LSSVR solution follows directly from solving a 
set of linear equations rather than from a convex quadratic 
program and moreover, makes the algorithm more 
computationally efficient. The Lagrangian can be 
constructed to solve the optimization problem in Eq. (2) [13], 
then the solution can be expressed as 
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where ,1 ,, ,
T

k k k kα α =  α   are Lagrange multipliers; 

[ ]1, ,
T

k ky y=y  ; R k k
k

×∈I  is a unit matrix and 1k is a 

vector of ones; 1
k k

−=P H  and k k k γ= +H K I  with the 
kernel matrix Kk, using the “kernel trick” 

( ) ( ) ( ), , , , 1, ,k i ji j i j kφ φ= ∀ =Κ x x   [13]. Finally, the 

LSSVR model estimation of the system at time k+1, i.e., 


1ky + , can be obtained [13]: 
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where ( ) ( ) ( )1 1, , 1, ,k i ki i kφ φ+ += ∀ =k x x   is a kernel 

vector to describe the similarity. 
In fact, as for the classification problem, it can be easily 

and surprisingly shown that the common classification loss 

[ ]2
1 ( )i iy f− x  can be rewritten as [11]: 

 [ ] [ ] [ ]2 2 2
1 ( ) ( ) ( )i i i i i i i iy f y y y f y f− = − −x x x=  (5)  

where 1 , 1, ,iy i k= ± =  . That is, the classification (i.e., 
pattern recognition) and regression (i.e., function 
approximation) problems can be described in a single unified 
KL algorithm [11]. 

Consequently, when the KL modeling framework is 
applied to process diagnosis, the corresponding decision 
function can be obtained in a straight way [11]. 

  [ ] T
1 11 sgn ( , , ) sgnk k k k k kky f b b+ ++  = = + w x α k  (6)  

B. Just-in-time Kernel Classifier for Process Diagnosis 

The JITL method, which is inspired by the ideas from 
local modeling and database technology, has been developed 
as an attractive alternative to nonlinear processes. As for 
process modeling and control, some JITL-based approaches 
have recently been proposed for nonlinear chemical 
processes [12, 16-18]. However, few nonlinear JITL methods 
are applied for process diagnosis. To account for this, in this 
work, a just-in-time kernel classifier (JKC) is proposed for 
process diagnosis. 

Generally, for a query sample xq, there are three main 
steps to build a JKC model: 

Step 1: Select the relevant samples to construct a similar 
set Ssim in the database S based on some defined similarity 
criterions.  

Step 2: Build a JKC model fJKC(xq) using the relevant 
dataset Ssim.  

Step 3: Predict its pattern of the output ˆqy  online for the 

current query sample xq and then discard the JKC model 
fJKC(xq).  

With the same three-step procedure, a new JKC model 
can be built for the next query sample. Without loss of 
generality, the traditional Euclidean distance-based similarity 
criterion [16] is utilized to search the similar samples xi in 
the dataset, with the similarity sqi defined below. 

 ( )expqi i qs = − −x x  (7) 

The lmax most similar samples can be selected due to the 
similarity criterion in Eq. (7). Then, rank the lmax similar 
samples according to the degree of similarity. A cumulative 
similarity factor (CSF) sl is defined below [12]: 
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which represents the cumulative similarity of l most similar 
samples compared to the relevant dataset Ssim. The CSF 
index can be utilized to access the cumulative similarity and 
then it can determine the l most similar samples in a more 
reasonable way. As an alternative method, the search range 
of [lmin, lmax] can be substituted by the choice of sl, e.g., 0.8 ≤ 
sl ≤ 0.95. Especially for multi-mode processes, the number of 
samples for each mode is different. Then, the relevant set of 
a query sample for different modes are generally different. It 
is difficult to determine the range of [lmin, lmax] beforehand. 
Therefore, compared to the method of searching l in the 
range of [lmin, lmax] directly, the CSF index is more 
meaningful and its computational burden can be reduced by 
narrowing the range of sl suitably [12]. 

For the JKC model, the user-defined parameters include 
the regularization parameter γ, the kernel parameter (e.g., the 

Gaussian kernel ( , ) expi j i jK σ = − − x x x x  with the 
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width parameter σ > 0 or the polynomial kernel 

( ) ( ), 1
d

i j i jK = +x x x x, with the degree parameter d a 

nature number), and the number of similar samples l. If the 
number of similar samples l is determined, the relevant 
dataset Ssim can be obtained. Then, with a pair of parameters 
[γ, σ], the JLSSVR model can be built. Based on the fast 
leave-one-out (FLOO) CV criterion [14], the total error of 
the JKC model with l samples can be obtained [14]: 
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where ,l iiP  is the item at the ith row and ith column of Pl, 

[ ]1, ,
T

l l ls s= =s P 1   and T
l l lo = −1 P 1 . The related terms 

(i.e., Pl and αl,i) are available. Additionally, the 
computational load of s and o is small. The complexity of 
FLOO-CV can be reduced to about O(l3) operations, 
compared to the naive LOO-CV with about O(l4) operations 
[14]. Consequently, compared to the conventional LOO-CV 
method, the computation of FLOO

lE  is much more efficient 
and online selection of parameters of JKC is feasible. 

III. SIMULATION RESULTS AND DISCUSSION 

A nonlinear continuous stirred tank reactor (CSTR) 
process is investigated here because CSTR is commonly 
utilized in chemical processes. The CSTR process, in which 
an exothermic irreversible first-order reaction takes place, is 
shown in Fig. 1. The concentration Ca of the product left in 
the reactor is controlled by manipulating the coolant flow qc 
through the jacket. Under the mass and energy balance, the 
dynamics of this CSTR process can be described below [19]: 
The nominal values of the variables and further information 
can be referred to Nahas et al [19].  

The simulation environment is MatLab V2009b with 
CPU main frequency 2.3 GHz and 4 GB memory. The 
misclassification rate is considered to assess the diagnosis 
performance. In the past research papers, the polynomial 
kernel is utilized to model many processes with a certain 
degree in the range of 1 ≤ d ≤ 5 [12, 13, 15]. Without loss of 
generality, the polynomial kernel is adopted for this case to 
illustrate the implementation procedure of JKC. 

A sequence of 1000 samples is obtained from 
http://homes.esat.kuleuven.be/~smc/daisy/. With a sampling 
rate of 5 steps, only 200 samples are used to explore the 
classification ability of JKC under limited samples. Half of 
them are for training and the rest are for test, respectively. 
Here, the input vector is simply chosen as 

, , 1 , 2 , , 1 , 2, , , , ,k a k a k a k c k c k c kC C C q q q− − − − =  x . And the output 

variable is , 1a kC + . Additionally, the switch from one mode to 

another is carried out by changing the operating conditions 
of the reactor. Each mode has its special operating conditions 

and exhibits different characteristics. Consequently, fault 
detection and diagnosis can be considered as the same 
problem of mode identification.  

First, 4 modes are investigated under the noisefree 
environment. The obtained results of 100 test samples for 
their online fault detection and diagnosis using the JKC 
method can be shown in Fig. 2. All of them can be accurately 
classified into suitable modes, despite that the process modes 
have been changing frequently. As can be also shown in Fig. 
2, each mode has uneven size. Consequently, the 
classification results indicate that the JKC approach can be 
simply applied to practical fault diagnosis problems with 
uneven sizes. 

0,c cq T

0 0, ,aq C T , ,aq C T

 

Figure 1.  A simplified schematic chart of the CSTR process. 
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Figure 2.  Online fault detection and diagnosis (4 modes) using JKC of the 
CSTR process under the noisefree environment. 

Furthermore, to simulate the industrial environment, both 
the input and output signals are corrupted by independent 
Gaussian noise with different variances. In such scenarios, 
some data are overlapping operation modes and exhibit more 
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complex characteristics. The obtained average results of 20 
Monte Carlo simulations under different scenarios can be 
listed in Table 1. Two kernel classifiers with fixed 
parameters, including overfitting (larger [γ, d]) and 
underfitting (smaller [γ, d]), are listed for comparison study.  

TABLE I.  PERFORMANCE COMPARISON USING JKC WITH/WITHOUT 
PARAMETER SELECTION UNDER DIFFERENT SCENARIOS 

Scenarios 
of 

Gaussian 
noise 

Misclassification rate (%) 

JKC with suitable 
parameters 

Parameters  
may overfitting 

Parameters  
may underfitting 

Noisefree 0 1 4 

2 % 18.4 22.7 19.9 

5 % 38.9 45.4 40.8 

 
As can be shown in Table 1, the JKC method can achieve 

better performance, i.e., with a smaller misclassification rate, 
than the related methods with fixed parameters, e.g., the 
proposed KL approach in [11]. This is mainly because the 
suitable parameters can be adjusted query-to-query using the 
FLOO-CV criterion. Actually, in many practical processes, 
the quality of modeling data may be poor because they often 
contain different noise and outliers. Consequently, it is 
important that the regression/classification model can adjust 
itself in a relatively suitable manner. Neither overfitting nor 
underfitting is a good choice if the parameters are user-
defined beforehand. The overfitting of the model may lead to 
more inaccurate predictions when the data contain more 
uncertainty. Alternatively, due to the online optimization of 
model parameters, the JKC method can improve the 
diagnosis performance for these query samples. Therefore, 
from all the obtained results, the proposed JKC method 
shows its simplicity, efficiency, and superiority for online 
fault detection and diagnosis. 

IV. CONCLUSION 

This paper has addressed the subject of developing a 
simple and suitable nonlinear method for online process 
diagnosis. The proposed just-in-time kernel classifier (JKC) 
can be simply implemented for online fault detection and 
diagnosis of chemical processes. Using an efficient strategy 
for parameter selection, the JKC model can obtain reliable 
performance to meet the practical requirements. The 
superiority of the proposed method is demonstrated through 
a simulated chemical example. In our opinion, the JKC can 
be further applied to complex process due to its lazy learning 
manner, which will be one of our future directions. 
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