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Abstract—Artificial bee colony algorithm is a smart 
optimization algorithm based on the bees acquisition model. A 
long time for the search of the artificial bee colony algorithm, 
in this paper we propose a parallel algorithm of artificial bee 
colony algorithm (MPI-ABC), with an application of a parallel 
programming environment MPI, using the programming mode 
of message passing rewriting the serial algorithm in parallel. 
Finally, this paper compare both serial and parallel algorithm 
with testing on complex function optimization problems. The 
experimental results show that the algorithm is effective to 
improve the search performance, especially for high-
dimensional complex optimization problem. 
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I. INTRODUCTION 

The artificial bee colony (Artificial Bee Colony, ABC) 
algorithm is based on the theory of swarm intelligence 
optimization algorithm. ABC algorithm in literature [1] 
proposed a swarm intelligence stochastic optimization 
algorithm in 2005, imitating bees swarm intelligence 
collecting nectar behavior. Bees carry out different activities 
in accordance with their respective division of labor, and 
achieve information sharing and exchange of bees to find 
the optimal solution of the problem. It has had a large 
number of applications in function optimization, 
combinatorial optimization, and engineering fields. But 
when facing the high-dimensional complex function, it 
exists searching a long time, slow in the convergence and 
prone to appear "premature" shortcomings. In this paper, we 
propose an MPI-based parallel artificial bee colony 
algorithm based on the ABC algorithm. Experiments of the 
parameter optimization problem show that MPI-ABC 
algorithm improves the search performance and it is very 
efficient and has a high practical value and potential 
applications. 

II. ARTIFICIAL BEE COLONY ALGORITHM 

Karaboga put forward artificial bee colony algorithm 
based on Seeley bees self-organizing model in 2005, which 
is a  simulation of the behavior of honey bees swarm 
intelligence optimization algorithm, achieving target search 
elements through the division of the swarm, providing with 

parameter settings simply, easy to implement and other 
characteristics. 

Artificial bee colony algorithm consists of three parts 
composed of leading bees (employ bees), watching bees 
(onlooker bees) and investigation bees(scout bees), leading 
bees go to find food sources, the watching bees waiting for 
leading bees bring back food source in the dance area and 
making choices on food source based on information, the 
scouts completely randomly to find new food sources. If a 
food source is discarded by employ bees and scout bees, then 
the employ bee corresponded to the food source becomes a 
scout bee. 

In algorithm, groups of solutions represent by SN D-
dimensional vector, the first of i  solution can be expressed 

as ix , ix  = ( 1ix , 2ix  , ..., iDx ), i=1,2,…,SN, food source 

corresponding to the amount of pollen solution quality 
(fitness value). The search process is as follows: 

(1) Employ bees generate a new food source selection 
according to the formula (1): 

)( kjijijijij xxxv −+= φ                             (1) 

Among, ijx is a new location, and k is randomly 

selected, k ∈ {1,2,…,BN},(BN is the population 
number),  moreover k ≠ i, j ∈ {1,2,…,D},(D is the 
dimension of the target space),  φ is a random number 
between[-1,1]. This step can also be suitably reduced. 
As the number of iterations cumulative, the distance 

between ( ij kjx x− ) become narrow and the search 

space also become narrow, namely search step become 
narrow. Dynamically adjusting the step size is helpful to 
improve the algorithm accuracy and ultimately to obtain 
the optimal solution. 

(2) Calculate the probability iP
 
of employ bees to 

search for the quality of the food source, and 
onlooker bees select a food source according to the 
formula (2): 


=

=
SN

n
ni fitfitP

1

/                                          (2)

 
Of which, fit  is fitness value of the first of i  

employ bee the corresponding food source. 
(3) Onlooker bees generate new solution ( )v i  

according to the formula (2); 
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(4) For employ bees get into a local optimum, keeping 
limit(limit is an important control parameter in the 
ABC algorithm) bout iterations not change, and the 
fitness employ bees obtained is not the global 
optimum, abandon the food source, and replace with 
the food resource scout bees randomly searched. Let 
the solution be give up is ix , then it is replaced by a 

new solution generated by scout bees. The updating 
formula is : 

)min)(max1,0(min jiji randx −+=                 (3)
 

Of which, j∈ {1,2,… ,D}, max and min denote 
respectively the maximum element and minimum 

elements in the collection { 1x , 2x , … , SNx }after 

removing ix . 

To sum up, onlooker bees transfer state on 
probability according to the size of the fitness, ensuring 
that most of the bees select a path in accordance with 
previous generations of historical information, and scout 
bees ensure that there is always a part of the bees 
randomly route, ensuring the diversity of solutions and 
this is helpful to escape from local optima. Otherwise, 
employ bees with elite characteristics retaining the 
previous generation of the optimal path can speed up the 
convergence of the algorithm and reduce the oscillation 
of the algorithm. It is the combined effect of the three to 
let the algorithm have stronger global search capability 
and the speed of convergence. 

III. PARALLEL ARTIFICIAL BEE COLONY ALGORITHM 

ANALYSIS AND DESIGN 

A. The serial ABC algorithm performance analysis 

We use the Intel (R) Thread Profiler 3.1 Performance 
Analysis Tools to analysis the serial ABC  algorithm in the 
50 dimension, identify the number of processed block and 
rewritten in parallel. The results are shown in table I: 

TABLE I.  ABC ALGORITHM PERFORMANCE ANALYSIS TABLE 

Function TotalTime(ms) Callers Callees %in 
Function

CalculateFitness() 57,525 3 0 100.00%

MemorizeBestSource() 10,309 1 0 100.00%

Init() 1,721 2 3 40.56% 

Initial() 1,049 1 1 1.33% 

SendEmployedBees() 657,811 1 3 46.24% 

CalculateProbabilitiies() 12,039 1 0 100.00%

SendOnlookerBees() 852,150 1 3 44.70% 

SendScoutBees() 6,268 1 1 89.06% 

main() 4,808,938 1 8 67.98% 

B. Parallel design of the bee colony algorithm 

From Table I, we can know, throughout the algorithm, 
function main, SendEmployedBees and SendOnlookerBees 
the three functions consuming the longest. We make parallel 
design for these three functions. We set that new algorithm 

runs on two nodes, n processes, each process computes 
respectively and statutes to the main process  in final. 

There are two load program in MPI, static load program 
and dynamic load program. Static load balancing is a basic 
method to achieve load balancing of MPI parallel programs. 
It means how to assign the task before the MPI parallel 
programs run. That expects each process to try to complete 
their tasks at the same time in order to effectively reduce the 
program running time. Generally speaking, each node 
running a process, the static load balancing is how to assign 
tasks on each node. 

Dynamic load balancing is an effective complement to 
static load balancing, referring that during the MPI parallel 
program running, according to each computing node in the 
current load, dynamic migration of tasks between the 
compute nodes, migrating the task on the heavy load of the 
node to the light load node, trying to balance the load of the 
compute nodes, thus reducing program run time. When 
estimating inaccurately of the assignments, dynamic load   
balancing can obtain excellent results. Compared to static 
load balancing, dynamic load balancing does not need to 
know the amount of task and the computing power of the 
node before MPI parallel program run tasks. But dynamic 
load balancing is more complex in implement, it needs some 
additional communication cost. 

This paper uses the static load program. First, we 
calculate the amount of assigned tasks required on each node, 
for the amount of assigned tasks on each node is proportional 
thereto the computing capacity of the node. So that each 
node expects to complete the task at the same time, thereby 
minimizing the program run time. 

MPI-ABC algorithm main steps are as follows: 
Step1: Initialize the MPI runtime environment; 
Step2: If the current process is the main process, get 

algorithms related to the initial parameters such as 
population size SN. And sent the above-mentioned 
parameters and split the sample to each slave processes. Each 
process randomly generate the initial nectar location 
constituted of SN solutions.  

Step3: Employ bees of each process in accordance with 
the formula (1) search for new nectar, and calculate the 
position and moderation. If the new location is better than 
the original location, then replace the original location. 

Step4: Scout bees of each process select a nectar location 
depend on probability according to the nectar amount of bees 
sources, and generate a new location according to the 
formula (1). After evaluating of the location, if the new 
location is better than original location, replace the original 
location. 

Step5: Each process finds the existence of abandoned 
nectar, where the employ bees become scout bees, and where 
the nectar is replaced of random nectar. 

Step6: Each process compares the number of iterations 
cycle with maxcycle, if (cycle > maxcycle) then records the 
optimal solution, otherwise goes to Step3. 

Step7: Each process statutes the results from the slave 
process to the main process. Exit parallel and output a final 
best solution. 
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IV. EXPERIMENTS AND ANALYSIS 

A. Experimental platforms and parameters 

The experimental hardware environment is Intel(R) 
Core(TM) 2 Quad Dual-core PC, memory 2 G. Software 
environment is Linux 2.6.23.1-42.fc8. Performance testing 
tool is Intel (R) Thread Profiler 3.1 Performance Analysis 
Tool. In the experiment, SN=20, BN=SN/2, we take D = 50 
dimension and D = 100 dimension, maxcycle=2500, 
limit=100. Test function independently executes 30 times to 
find the average. The experiment selects three benchmark 
functions to carry out comparison test from references [6]. 

(1) Sphere function: 

2

1

( )
n

i
i

f x x
=

=    1 0 0 1 0 0ix− ≤ ≤  

It is a continuous unimodal function, when ix  = 0 ( i  = 

1,2, ..., n) the function reaches the minimum value 0. 
(2) Griewank function: 

2
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It is a complex nonlinear multi-peak function, when ix  

= 0 ( i  = 1,2, ..., n) the function reaches the minimum value 
0. 

(3) Rastrigin function: 
2

1

( ) ( 10cos(2 ) 10)
n

i i
i
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=
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It is a complex nonlinear multi-peak function, when ix  

= 0 ( i  = 1,2, ..., n) the function reaches the minimum value 
0. 

B. Experimental Analysis 

Analysis I: In 100 dimension, as can be seen from Table 
II  that MPI-ABC algorithm is better than  ABC algorithm  
in  aspect  of  Calculating  the  Maximum and Mean of the 
function, this fully shows that the improved algorithm has 
good global search performance. 

TABLE II.  COMPARISON  OF  TEST FUNCTION’S OPTIMIZATION 
RESULTS  (D=100) 

Function Name Algorithm Maximum Mean 

 
Sphere 

ABC 2.887775e-05 2.934553e-06

MPI-ABC 6.462004e-05 6.084885e-06

 

Griewank 
ABC 6.904620e-07 2.625769e-08

MPI-ABC 2.405992e-02 4.278692e-03

 

Rastrigin 
ABC 2.173169e+01 1.146211e+01

MPI-ABC 1.835299e+01 1.226773e+01

Analysis II: If each ABC algorithm average running time 

is ST and each MPI-ABC algorithm average running time 

is PT ,then the speedup ratio is PS : 

/p s pS T T=  
Table III and Table IV are the speedup ratio of two 

algorithms in 50 dimension and 100 dimension, and it can 
be concluded that using MPI parallel algorithm has 
effectively improved the computing performance and 
speedup ratio performance. Among of the 100 dimension 
Griewank function has improved more than 50%, the other 
two function also increased by nearly 50%. This illustrates 
that MPI-ABC algorithm has its superiority in solving high-
dimensional global search space problem. 

TABLE III.   OPERATING EFFICIENCY OF THE ALGORITHM IN 50 
DIMENSION 

Function 
Name 

Runging Time (D=50) Speedup 
Ratio ABC(s) MPI-ABC(s) 

Sphere 0.8700 0.6525 1.3333 

Griewank 5.7200 3.7423 1.5285 

Rastrigin 4.6100 2.4913 1.8504 

TABLE IV.  OPERATING EFFICIENCY OF THE ALGORITHM IN 100 
DIMENSION 

Function  
Name 

Running Time(D=100) Speedup 
Ratio ABC(s) MPI-ABC(s) 

Sphere 1.7900 0.9074 1.9723 

Griewank 14.5600 7.1085 2.0483 

Rastrigin 9.2300 5.0940 1.8119 

Analysis III: As shown in Figure 1, Figure 2 and Figure 
3 are respectively Sphere funtion、Griewank function and 
Rastrigin function in 1-500 dimension, the running time of 
ABC function and MPI-ABC function. Among of these 
MPI-ABC runs on 2 nodes. From the figures, we can see 
that speedup ratio of three functions is 2, this also explains 
the superiority of MPI-ABC algorithm for solving large 
search space of high-dimensional global problem. 

 

Figure 1.  Sphere function’s running time in some dimension. 

5.12 5.12ix− ≤ ≤
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Figure 2.  Griewank function’s running time in some dimension 

 

Figure 3.  Rastrigin function’s running time in some dimension 

V. CONCLUSION 

In this paper after studying the traditional artificial bee 
colony algorithm, on the basis of it, using MPI parallel 
programming model, we study and design artificial bee 
colony MPI parallel algorithms under clusters. The 
experiment result show that the algorithm in high dimension, 
has a high operating efficiency and provide an effective 
means for the high-dimensional complex optimization 

problem. For the case of low dimension, due to 
corresponding parallelism overhead of process creation and 
destruction overhead, the speed of parallel processing and 
serial processing is little different. Overall, Using MPI 
parallel programming model has been greatly improved the 
entire performance of the ABC algorithm. 
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