
Research of Parallel Artificial Bee Colony Algorithm Based on MPI

Yingsen Hong
 Department of Computer Science

and Engineering
 Harbin Institute of Technology

 150001 Harbin, China
hongyingsen@139.com

Zhenzhou Ji
 Department of Computer Science

and Engineering
 Harbin Institute of Technology

 150001 Harbin, China
jzz@pact518.hit.edu.cn

Chunlei Liu
 Department of Computer Science

and Engineering
 Harbin Institute of Technology

 150001 Harbin, China
812liuchunlei@163.com

Abstract—Artificial bee colony algorithm is a smart
optimization algorithm based on the bees acquisition model. A
long time for the search of the artificial bee colony algorithm,
in this paper we propose a parallel algorithm of artificial bee
colony algorithm (MPI-ABC), with an application of a parallel
programming environment MPI, using the programming mode
of message passing rewriting the serial algorithm in parallel.
Finally, this paper compare both serial and parallel algorithm
with testing on complex function optimization problems. The
experimental results show that the algorithm is effective to
improve the search performance, especially for high-
dimensional complex optimization problem.

Keywords-swarm intelligence theory; function optimization;
artificial bee colony; parallel programming; MPI

I. INTRODUCTION

The artificial bee colony (Artificial Bee Colony, ABC)
algorithm is based on the theory of swarm intelligence
optimization algorithm. ABC algorithm in literature [1]
proposed a swarm intelligence stochastic optimization
algorithm in 2005, imitating bees swarm intelligence
collecting nectar behavior. Bees carry out different activities
in accordance with their respective division of labor, and
achieve information sharing and exchange of bees to find
the optimal solution of the problem. It has had a large
number of applications in function optimization,
combinatorial optimization, and engineering fields. But
when facing the high-dimensional complex function, it
exists searching a long time, slow in the convergence and
prone to appear "premature" shortcomings. In this paper, we
propose an MPI-based parallel artificial bee colony
algorithm based on the ABC algorithm. Experiments of the
parameter optimization problem show that MPI-ABC
algorithm improves the search performance and it is very
efficient and has a high practical value and potential
applications.

II. ARTIFICIAL BEE COLONY ALGORITHM

Karaboga put forward artificial bee colony algorithm
based on Seeley bees self-organizing model in 2005, which
is a simulation of the behavior of honey bees swarm
intelligence optimization algorithm, achieving target search
elements through the division of the swarm, providing with

parameter settings simply, easy to implement and other
characteristics.

Artificial bee colony algorithm consists of three parts
composed of leading bees (employ bees), watching bees
(onlooker bees) and investigation bees(scout bees), leading
bees go to find food sources, the watching bees waiting for
leading bees bring back food source in the dance area and
making choices on food source based on information, the
scouts completely randomly to find new food sources. If a
food source is discarded by employ bees and scout bees, then
the employ bee corresponded to the food source becomes a
scout bee.

In algorithm, groups of solutions represent by SN D-
dimensional vector, the first of i solution can be expressed

as ix , ix = (1ix , 2ix , ..., iDx), i=1,2,…,SN, food source

corresponding to the amount of pollen solution quality
(fitness value). The search process is as follows:

(1) Employ bees generate a new food source selection
according to the formula (1):

)(kjijijijij xxxv −+= φ (1)

Among, ijx is a new location, and k is randomly

selected, k ∈ {1,2,…,BN},(BN is the population
number), moreover k ≠ i, j ∈ {1,2,…,D},(D is the
dimension of the target space), φ is a random number
between[-1,1]. This step can also be suitably reduced.
As the number of iterations cumulative, the distance

between (ij kjx x−) become narrow and the search

space also become narrow, namely search step become
narrow. Dynamically adjusting the step size is helpful to
improve the algorithm accuracy and ultimately to obtain
the optimal solution.

(2) Calculate the probability iP

of employ bees to

search for the quality of the food source, and
onlooker bees select a food source according to the
formula (2):


=

=
SN

n
ni fitfitP

1

/ (2)

Of which, fit is fitness value of the first of i

employ bee the corresponding food source.
(3) Onlooker bees generate new solution ()v i

according to the formula (2);

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1352

(4) For employ bees get into a local optimum, keeping
limit(limit is an important control parameter in the
ABC algorithm) bout iterations not change, and the
fitness employ bees obtained is not the global
optimum, abandon the food source, and replace with
the food resource scout bees randomly searched. Let
the solution be give up is ix , then it is replaced by a

new solution generated by scout bees. The updating
formula is :

)min)(max1,0(min jiji randx −+= (3)

Of which, j∈ {1,2,… ,D}, max and min denote
respectively the maximum element and minimum

elements in the collection { 1x , 2x , … , SNx }after

removing ix .

To sum up, onlooker bees transfer state on
probability according to the size of the fitness, ensuring
that most of the bees select a path in accordance with
previous generations of historical information, and scout
bees ensure that there is always a part of the bees
randomly route, ensuring the diversity of solutions and
this is helpful to escape from local optima. Otherwise,
employ bees with elite characteristics retaining the
previous generation of the optimal path can speed up the
convergence of the algorithm and reduce the oscillation
of the algorithm. It is the combined effect of the three to
let the algorithm have stronger global search capability
and the speed of convergence.

III. PARALLEL ARTIFICIAL BEE COLONY ALGORITHM

ANALYSIS AND DESIGN

A. The serial ABC algorithm performance analysis

We use the Intel (R) Thread Profiler 3.1 Performance
Analysis Tools to analysis the serial ABC algorithm in the
50 dimension, identify the number of processed block and
rewritten in parallel. The results are shown in table I:

TABLE I. ABC ALGORITHM PERFORMANCE ANALYSIS TABLE

Function TotalTime(ms) Callers Callees %in
Function

CalculateFitness() 57,525 3 0 100.00%

MemorizeBestSource() 10,309 1 0 100.00%

Init() 1,721 2 3 40.56%

Initial() 1,049 1 1 1.33%

SendEmployedBees() 657,811 1 3 46.24%

CalculateProbabilitiies() 12,039 1 0 100.00%

SendOnlookerBees() 852,150 1 3 44.70%

SendScoutBees() 6,268 1 1 89.06%

main() 4,808,938 1 8 67.98%

B. Parallel design of the bee colony algorithm

From Table I, we can know, throughout the algorithm,
function main, SendEmployedBees and SendOnlookerBees
the three functions consuming the longest. We make parallel
design for these three functions. We set that new algorithm

runs on two nodes, n processes, each process computes
respectively and statutes to the main process in final.

There are two load program in MPI, static load program
and dynamic load program. Static load balancing is a basic
method to achieve load balancing of MPI parallel programs.
It means how to assign the task before the MPI parallel
programs run. That expects each process to try to complete
their tasks at the same time in order to effectively reduce the
program running time. Generally speaking, each node
running a process, the static load balancing is how to assign
tasks on each node.

Dynamic load balancing is an effective complement to
static load balancing, referring that during the MPI parallel
program running, according to each computing node in the
current load, dynamic migration of tasks between the
compute nodes, migrating the task on the heavy load of the
node to the light load node, trying to balance the load of the
compute nodes, thus reducing program run time. When
estimating inaccurately of the assignments, dynamic load
balancing can obtain excellent results. Compared to static
load balancing, dynamic load balancing does not need to
know the amount of task and the computing power of the
node before MPI parallel program run tasks. But dynamic
load balancing is more complex in implement, it needs some
additional communication cost.

This paper uses the static load program. First, we
calculate the amount of assigned tasks required on each node,
for the amount of assigned tasks on each node is proportional
thereto the computing capacity of the node. So that each
node expects to complete the task at the same time, thereby
minimizing the program run time.

MPI-ABC algorithm main steps are as follows:
Step1: Initialize the MPI runtime environment;
Step2: If the current process is the main process, get

algorithms related to the initial parameters such as
population size SN. And sent the above-mentioned
parameters and split the sample to each slave processes. Each
process randomly generate the initial nectar location
constituted of SN solutions.

Step3: Employ bees of each process in accordance with
the formula (1) search for new nectar, and calculate the
position and moderation. If the new location is better than
the original location, then replace the original location.

Step4: Scout bees of each process select a nectar location
depend on probability according to the nectar amount of bees
sources, and generate a new location according to the
formula (1). After evaluating of the location, if the new
location is better than original location, replace the original
location.

Step5: Each process finds the existence of abandoned
nectar, where the employ bees become scout bees, and where
the nectar is replaced of random nectar.

Step6: Each process compares the number of iterations
cycle with maxcycle, if (cycle > maxcycle) then records the
optimal solution, otherwise goes to Step3.

Step7: Each process statutes the results from the slave
process to the main process. Exit parallel and output a final
best solution.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1353

IV. EXPERIMENTS AND ANALYSIS

A. Experimental platforms and parameters

The experimental hardware environment is Intel(R)
Core(TM) 2 Quad Dual-core PC, memory 2 G. Software
environment is Linux 2.6.23.1-42.fc8. Performance testing
tool is Intel (R) Thread Profiler 3.1 Performance Analysis
Tool. In the experiment, SN=20, BN=SN/2, we take D = 50
dimension and D = 100 dimension, maxcycle=2500,
limit=100. Test function independently executes 30 times to
find the average. The experiment selects three benchmark
functions to carry out comparison test from references [6].

(1) Sphere function:

2

1

()
n

i
i

f x x
=

=  1 0 0 1 0 0ix− ≤ ≤

It is a continuous unimodal function, when ix = 0 (i =

1,2, ..., n) the function reaches the minimum value 0.
(2) Griewank function:

2

1 1

1
() cos() 1

400

nn
i

i
i i

x
f x x

i= =

= − + ∏

600 600ix− ≤ ≤

It is a complex nonlinear multi-peak function, when ix

= 0 (i = 1,2, ..., n) the function reaches the minimum value
0.

(3) Rastrigin function:
2

1

() (10cos(2) 10)
n

i i
i

f x x xπ
=

= − +

It is a complex nonlinear multi-peak function, when ix

= 0 (i = 1,2, ..., n) the function reaches the minimum value
0.

B. Experimental Analysis

Analysis I: In 100 dimension, as can be seen from Table
II that MPI-ABC algorithm is better than ABC algorithm
in aspect of Calculating the Maximum and Mean of the
function, this fully shows that the improved algorithm has
good global search performance.

TABLE II. COMPARISON OF TEST FUNCTION’S OPTIMIZATION
RESULTS (D=100)

Function Name Algorithm Maximum Mean

Sphere

ABC 2.887775e-05 2.934553e-06

MPI-ABC 6.462004e-05 6.084885e-06

Griewank
ABC 6.904620e-07 2.625769e-08

MPI-ABC 2.405992e-02 4.278692e-03

Rastrigin
ABC 2.173169e+01 1.146211e+01

MPI-ABC 1.835299e+01 1.226773e+01

Analysis II: If each ABC algorithm average running time

is ST and each MPI-ABC algorithm average running time

is PT ,then the speedup ratio is PS :

/p s pS T T=
Table III and Table IV are the speedup ratio of two

algorithms in 50 dimension and 100 dimension, and it can
be concluded that using MPI parallel algorithm has
effectively improved the computing performance and
speedup ratio performance. Among of the 100 dimension
Griewank function has improved more than 50%, the other
two function also increased by nearly 50%. This illustrates
that MPI-ABC algorithm has its superiority in solving high-
dimensional global search space problem.

TABLE III. OPERATING EFFICIENCY OF THE ALGORITHM IN 50
DIMENSION

Function
Name

Runging Time (D=50) Speedup
Ratio ABC(s) MPI-ABC(s)

Sphere 0.8700 0.6525 1.3333

Griewank 5.7200 3.7423 1.5285

Rastrigin 4.6100 2.4913 1.8504

TABLE IV. OPERATING EFFICIENCY OF THE ALGORITHM IN 100
DIMENSION

Function
Name

Running Time(D=100) Speedup
Ratio ABC(s) MPI-ABC(s)

Sphere 1.7900 0.9074 1.9723

Griewank 14.5600 7.1085 2.0483

Rastrigin 9.2300 5.0940 1.8119

Analysis III: As shown in Figure 1, Figure 2 and Figure
3 are respectively Sphere funtion、Griewank function and
Rastrigin function in 1-500 dimension, the running time of
ABC function and MPI-ABC function. Among of these
MPI-ABC runs on 2 nodes. From the figures, we can see
that speedup ratio of three functions is 2, this also explains
the superiority of MPI-ABC algorithm for solving large
search space of high-dimensional global problem.

Figure 1. Sphere function’s running time in some dimension.

5.12 5.12ix− ≤ ≤

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1354

Figure 2. Griewank function’s running time in some dimension

Figure 3. Rastrigin function’s running time in some dimension

V. CONCLUSION

In this paper after studying the traditional artificial bee
colony algorithm, on the basis of it, using MPI parallel
programming model, we study and design artificial bee
colony MPI parallel algorithms under clusters. The
experiment result show that the algorithm in high dimension,
has a high operating efficiency and provide an effective
means for the high-dimensional complex optimization

problem. For the case of low dimension, due to
corresponding parallelism overhead of process creation and
destruction overhead, the speed of parallel processing and
serial processing is little different. Overall, Using MPI
parallel programming model has been greatly improved the
entire performance of the ABC algorithm.

ACKNOWLEDGMENT

This research was supported by the National Natural
Science Foundation of China under Grant No. 61173024.

REFERENCES
[1] Karaboga D. An idea based on bee swarm for numeri-cal

optimization,TR06[R].[S.l.]: Erciyes University, Engineering Faculty,
Computer Engineering Department, 2005.

[2] LIU Hao, YANG Hui, YIN Zhong-ke, et al.Signal sparse
decomposition based on MPI parallel computing[J].
ComputerEngineering, 2008, 34(12): 9-21.

[3] CHOU Y C, Nestinger S S, Cheng H H.Ch MPI：Interpretive parallel
computing in C[J]. Computing in Science and Engineering,
2010,12(2): 54-67.

[4] CHEN Xing, HUANG Ka-ma. Constructing a Beowulf parallel
computing system based on Windows and MPI[J]. Computer
Engineering and Applications, 2003, 39(4): 59-61.

[5] LI Shuang, LI Wen-jing, YANG Wen, ZHOU Hai-yan. Research and
Implementation of Parallel Random Perturbation Artificial Bee
Colony Algorithm Based on Multi-core PC[J].
MICROELECTRONICS & COMPUTER, 2012, 29(9): 63-66.

[6] Karaboga D, Basurk B. On the performance of Artificial Bee
Colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1):
687-697.

[7] GAO Wei-feng, LIU San-yang, JIANG Fei, ZHANG Jian-ke. Hybrid
artificial bee colony algorithm[J]. Systems Engineering and
Electronics, 2011, 33(5): 1167-1170.

[8] LU Yun-e, HUANG Zong-yu, LI Chao-yang, GUO Xiang-bin, YIN
Hui-ming. The MPI parallel computing based on the microcomputer
cluster[J]. Electronic Design Engineering, 2011, 19(5): 78-81.

[9] LU Ke-zhong, LIN Xiao-hui. Implementing Load Balance in MPI
Parallel Program[J]. Microcomputer Information, 2007, 23(5-3): 226-
227.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1355

