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Abstract—Abandoning the constraint conditions of 
memberships in traditional fuzzy clustering algorithms, such 
as Fuzzy C-Means (FCM), Possibilistic Fuzzy c-Means (PCM) 
is more robust in dealing with noise and outliers. A small 
amount of labeled patterns guiding the clustering process are 
easy to be obtained in practical applications. In this study, a 
novel semi-supervised clustering technique titled 
semi-supervised possibilistic clustering (sPCM) is proposed. 
Because the PCM algorithm is easy to fall into identical 
clusters, we introduce the center maximization to overcome 
this difficulty. The proposed algorithm makes distance between 
different classes as far as possible, which can avoid identical 
clusters. The experimental results demonstrate that the 
accuracy of the proposed sPCM algorithm has been improved, 
making algorithm more robust by inheriting the 
characteristics of PCM.  

Keywords-PCM, maximized central distance, semi-supervised 
clustering, robustness 

I.  INTRODUCTION 

Clustering is the process of distinguishing and 
classifying physical or abstract objects according to the 
similarity between them. Traditional clustering algorithms 
can be divided into two categories: unsupervised clustering 
and semi-supervised clustering. The algorithms that make 
use of unlabeled data and available labeled patterns are 
termed semi-supervised clustering algorithms[1]. The 
clustering task has been applied in several problems, such as 
biological information processing [2], text processing [3], 
image processing[4] and edge detection[5]. Furthermore, the 
semi-supervised clustering algorithms can be divided into 
two types according to the use of the different ways of 
monitoring information: 1) pairwise constraint [5, 6, 7]; 2) 
label information of the sample data [8, 9, 10]. 

The development of semi-supervised clustering based on 
label information of the sample data is as follows. Pedrycz [9] 
firstly proposed semi-supervised fuzzy c-means clustering 
based on label information of the sample data in 1997, 
which successfully used the labeled samples information. In 
2004, Zhang et al.[11] retained the objective function from 
the FCM but replaced the Euclidean distance metric with a 
Gaussian Kernel-based one. And only unlabeled patterns 
undergo supervised learning, which means the labeled 
patterns never gets updated. In 2008, Li[12] proposed an 
improved algorithm to avoid the redundant unsupervised 
learning of labeled patterns in Pedrycz. In 2009, ENDO et al. 

[13] trained both labeled and unlabeled patterns in both 
unsupervised and supervised fashion, and the supervised 
training function was entropy-regularized. Most improved 
algorithms are based on the classic semi-supervised FCM 
algorithm proposed by Pedrycz. However, the probability 
constraints of membership in semi-supervised FCM makes 
it sensitive to noise and exceptions points, which will affect 
the clustering performance seriously. In this paper, we 
propose a semi-supervised PCM algorithm based on PCM 
[14] by using a small amount of labeled information. The 
algorithm ignores restricted condition of membership, 
making the membership value of noise and outliners tend to 
be smaller value and enhancing the noise immunity of the 
clustering process. 

In the meantime, because sPCM algorithm abandons 
constraint condition of membership, making each cluster 
has no contact with each other, which leads to identical 
clusters. The idea of central distance maximization which 
makes the distance between each cluster center is as far as 
possible is introduced in sPCM to avoid the identical cluster. 
The experiments show that proposed sPCM algorithm has a 
better clustering performance and robustness compared to 
the semi-supervised FCM algorithm. 

II. THE IDEA OF MAXIMIZED CENTRAL DISTANCE 

Making the distance between different cluster centers as 
far as possible can avoid identical clusters in iterative phase, 
which is the main meaning of the idea of maximized central 
distance. Fig.2-1 shows the conceptual of maximized central 
distance. The objective function of maximized central 
distance is:  
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Fig.2-1. The conceptual display of maximized central distance. 
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III. SEMI-SUPERVISED POSSIBILISTIC CLUSTERING 

ALGORITHM ON MAXIMIZED CENTRAL DISTANCE（SPCM） 

Given a data set { }NixX i ,,2,1| == , d
ix R∈ ,

C  is the clustering number. Let 

{ }| 1, 2, , , 1, 2, ,ijU u i C j N= = =   to be the 

membership matrix, where iju  represents the membership 

degree of jx  corresponding to the i th cluster,  iju  is the 

typical value of labeled samples, { }| 1, 2, ,iV v i C= =   

denotes C  cluster centers, ikik vxd −=  represents 

the distance between jx  and iv , m is the fuzzy weighted 

index. 
Take account the full use of a small number of labeled 

information and to avoid the coincident cluster problem, we 
present semi-supervised possibilistic fuzzy c-means 
clustering algorithm based on maximized central distance to 
improve the performance of clustering. 

The objective function of sPCM can be described as 
follows: 
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where the fuzzy weighted index 2=m , α denotes a 
scaling factor used to maintain the balance between 
supervised and unsupervised component, β  is the 

coefficient of center maximization item, iη  is a penalty 

factor. In (3-1), the first two items are PCM items, the third 
item is semi-supervised item, and the last item denotes 
maximized central distance. 

Minimizing the objective function by Lagrangian 
multipliers, the updating equation of membership and 
cluster center can be expressed by: 
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where ( )( )Tijijij vxvxd −−=2 . 

The algorithm of sPCM is described as follows. 

1. Set the clustering number C, parameter 0>m , 

0>iη ， 0>α , 0>β ,threshold 0.001ε = , the 

maximal number of iterations t_max=100, randomly 

initialize cluster centers iv and the typical values of labeled 

patterns { }ijulabelU ˆ_ = . 

2. Compute the partition matrix ( )U t by (3-2). 
3. Compute the cluster center matrix ( )V t  by (3-3). 
4. Repeat step 2 to step 3, until the termination criterion is 

satisfied. 
The properties of sPCM are: 

(1) uX denotes unlabeled pattern set, lX denotes labeled 

pattern set, and 0
l

u

X

X
α = , when 0α α≥ , the clustering 

performance of sPCM is optimal; 

(2) when u lX X>> , the performance of sPCM 

degenerates into unsupervised PCM. 

IV. EXPERIMENTAL RESULTS 

In this section, numerical experiments are conducted on 
artificial and UCI standard data sets to investigate the 
performance of sPCM. The rand index (RI) and the 
normalized mutual information (NMI) are used for 
revaluating the performance of the proposed sPCM 
algorithm. Both RI and NMI take the value within the 
interval between 0 and 1. The higher the values, the better 
the clustering performance[15].  

In order to reflect the fairness of the comparison, we 
fixed the parameters used in our experiments as follows: the 
maximal number of iterations t_max=100, parameter m=2,

0.01β =  and the threshold 0.001ε = .The principle of 
labeled patterns selected are as follows: assuming that the 
category properties of labeled patterns are known in 
advance, the membership of labeled pattern jx is defined as 

 1iju = , and the membership of unlabeled pattern jx is 

defined as  0iju = . 

A. Experimental analysis of noise immunity 

In order to support that the proposed algorithm has 
overcome the noise sensitivity of sFCM, we conduct an 
example with a simple artificial data set. We denote 

{ }1 2 10, , ,x x x by
10X , and { }1 2 10 11 12, , , , ,x x x x x by

12X , 11x  in Fig.4-1 is outliner and 12x  in Fig.4-1 is noise 

point, 10X  has two diamond shaped clusters with five 

points both on the left and right side of the axis. 11x and 12x  

are equidistant from all corresponding pairs of points in the 

two clusters. Designated 1x  and 6x  for the labeled 

samples, and the typical values of them are defined: 
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
11 1u = ， 

21 0u = ， 
16 0u = ， 

26 1u = .parameter 1=α , 
0.01β = , m=2, the number of cluster C=2. Figure 4-1 

shows the distribution of original data set 
12X . Table 4-1 

shows how outliner and noise point affect partitions found 
by sFCM and sPCM. 

 
Fig. 4-1 the distribution of original data set 

12X  

Table 4-1 Memberships from sFCM and sPCM in 
12X  

 DATA sFCM sPCM

Pt x y Cluster1 Cluster2 Cluster1 Cluster2

1 -5 0 0.15 0.85 0.76 0.03

2 -3.34 1.67 0.12 0.88 0.30 0.05

3 -3.34 0 0. 10 0.90 0.79 0.05

4 -3.34 -1.67 0.18 0.82 0.30 0.05

5 -1.67 0 0.17 0.83 0.22 0.09

6 1.67 0 0.84 0.16 0.04 0.99

7 3.34 1.67 0.97 0.03 0.02 0.22

8 3.34 0 0.99 0.01 0.03 0.38

9 3.34 -1.67 0.91 0.09 0.02 0.21

10 5 0 0.94 0.06 0.01 0.12

11 0 0 0.50 0.50 0.08 0.08

12 0 10 0.50 0.50 0.01 0.01
It can be seen from Table 4-1 that the typicality values 

of outliner 11x  and noise point 12x  assigned by sFCM are 

both 0.50. This significantly affects the estimation of the 
cluster centers. The proposed sPCM algorithm gives very 
low memberships for the two points of 11x  and 12x as 

desired. The reason is that the sPCM relaxes the column 

constraint 
1

1,
C

ij
i

u j
=

= ∀ for fuzzy partitions, which has 

circumvented the counterintuitive results just displayed. As 
a result, the cluster centers are virtually unchanged. From 
the analysis above, sPCM prototypes are less influenced by 
the noise and outliners than sFCM. 

B. UCI datasets 

The performance of the proposed sPCM algorithm has 
been evaluated and compared with four clustering 
algorithms using two UCI datasets. Iris data set contains 150 

samples with 3 classes, and each sample has 4 feature values. 
Glass data set contains 214 samples with 3 classes, and each 
sample has 10 feature values. The parameters are set as: 

1α = , 0.01β = . Table 4-3 shows the performance 
comparison of four algorithms on Iris and Glass datasets, 
and the number of labeled patterns is 0.1 of the total number 
of patterns. 

Table 4-3 the performance comparison of four algorithms 
 on Iris and Glass datasets 

Index FCM sFCM PCM sPCM

NMI(Iris) Mean 0.8502 0.8994 0.8404 0.9076

std 0.0990 0.0322 0.0672 0.0187

RI(Iris) Mean 0.9101 0.9586 0.9226 0.9633

std 0.0948 0.0140 0.0682 0.0109

NMI(Glass) Mean 0.7621 0.8080 0.7216 0.8131

std 0 0.0241 0.1478 0.0417

RI(Glass) Mean 0.8545 0.8613 0.8369 0.8991

std 0.1110 0.0122 0.2282 0.0284
Fig. 4-5 shows NMI as a function of α  on Iris and 

Glass datasets, and the number of labeled patterns is 0.1 of 
the total number of patterns. Fig. 4-6 shows the clustering 
accuracy under different number of labeled data on Iris and 
Glass datasets when 1α = . 

 

(a) NMI as a function of α  on Iris dataset 

 

(b) NMI as a function of α  on Glass dataset 
Fig. 4-5 NMI as a function of α  on Iris and Glass datasets 
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(a) the clustering accuracy under different number of labeled  
data on Iris dataset 

 

(b) The clustering accuracy under different number of labeled data on Glass 
dataset 

Fig. 4-6 the clustering accuracy under different number of labeled data on 
Iris and Glass datasets 

Table 4-3 shows the performance comparison of four 
algorithms on Iris and Glass datasets. The clustering 
accuracy of semi-supervised sFCM and sPCM is much 
higher than unsupervised FCM and PCM due to the guiding 
role of a small amount of labeled information. By 
introducing the idea of center maximization, which makes 
distance between each class as far as possible, the 
performance of the sPCM is superior than sFCM and also 
effectively avoids identical clusters. 

Fig. 4-5(a) shows NMI as a function of α  on Iris 
dataset. The trends of sFCM and sPCM are same in the 
whole range, and the optimal values of the two algorithms 
are both obtained when 0.9α = . In most cases, the 
clustering performance of sFCM is lower than sPCM with 
the same value ofα . The clustering performance begins to 
decline with increasing of α .Fig. 4-5(b) shows NMI as a 
function of α  on Glass dataset. The optimal value of 
sPCM is obtained when 0.8α = , and the clustering 
performance begins to stabilize with increasing ofα . The 
optimal value of sFCM is obtained when 10α = , and the 
clustering performance begins to stabilize with increasing of
α , but its clustering accuracy never exceeds sPCM.  

Fig. 4-6(a) shows the clustering accuracy under different 
number of labeled data on Iris dataset. The clustering 
performance of sFCM is lower than sPCM with increasing 
of the number of labeled patterns in the most cases, and the 
clustering performance begins to stabilize with increasing of 
the number of labeled patterns. Fig. 4-6(b) shows the 
clustering accuracy under different number of labeled data 
on Glass dataset. The clustering performance of sFCM is 

higher than sPCM when the number of labeled patterns is 
zero. With increasing of the number of labeled patterns, the 
clustering performance of sPCM gradually exceeds sFCM, 
and the clustering accuracy tends to stabilize when the 
number of labeled patterns increased to a certain amount. 

V. CONCLUSIONS 

In practical applications, most of the datasets can get a 
small amount of labeled information easily. Many studies 
have shown that a small amount of labeled information is 
very valuable in guiding the clustering in the 
semi-supervised algorithms. Thus, a novel semi-supervised 
PCM algorithm sPCM is proposed in this paper. However, 
sPCM still prone to generate the coincident clusters like 
PCM. Introducing the idea of maximized central distance 
has successfully avoided above weaknesses. The 
experimental results indicate that the proposed sPCM 
algorithm has better clustering performance and is more 
robust than sFCM algorithm when the data set contains 
noise points and outliners. Even if for the data set without 
noise points and outliners, sPCM algorithm still has the 
same clustering performance as sFCM algorithm. Most data 
sets in real-world applications in the presence of noise and 
outliners, which verifies the proposed algorithm is more 
applicable. However, the run time of sPCM has increased, 
how to eliminate the weakness to gain better clustering 
results have not been solved yet. 
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