
An Automatic Testing Framework Used in Agile Software Development

Wang Fei Wu Xiao-yong Wang Yu-wei Li Jian-kun Sun wei
College of Information Technology

Beijing Normal University Zhuhai Campus
 Zhuhai, China

wangfei171717@yahoo.com.cn, {wuxiaoyong, piaoerwang, lijiankun, angela--wei}@163.com

Abstract—automatic testing is very important for agile
software development. There are some testing tasks can be
finished by automatic tools, but most of them can not meet the
actual needs of enterprises which is the direct reason of
building an agile automatic testing framework named as
Agilework. The structure, operation principle and building
steps of the Agilework are descripted in details. The Agilework
is a scalable framework which has high efficiency and
flexibility. It can meet the requirements of the automatic
testing in agile software development.

Keywords-Agile Software Development; Automatic Testing;
STAF; Keyword-Driven Testing

I. INTRODUCTION

The thought of agile development brings dawn to the
software development as well as challenges to the software
testing. While using the method of agile to develop softwares,
it is necessary to run the whole set of smoke testing of the
product at least once a day, which makes the testers feel
panic about the heavy workload. Thus, automatic testing is
necessarily needed [1]. The radical reason of using automatic
testing is that it can save time and give the feedback of the
testing result as soon and frequently as possible. So the
testers have much more time to consider better designs of the
testing use-cases and to take more explorative tests. [2].
There are many automatic testing tools, but most of them can
not meet the individuation needs of enterprises, which is the
direct cause of building an agile automatic testing framework
named as Agilework. Theoretically, testing tools can be used
to carry out some automatic testing, which can save costs of
building new testing frameworks. However, disappointingly,
the utilization of fixed testing tools，such as record and
playback tools, in the practicing process is lack of reusability
and flexibility [3]. Thus they could not meet the diverse
needs of enterprises. So an integrated and pragmatic solution
of automatic testing (ie. testing framework) is needed to
achieve the goal of automatic testing in high qualities and
high effitiency.

II. THE DESIGN AND IMPLEMENTION OF AGILEWORK

FRAMEWORK

Testing framework is a collection of automatic testing
standards, basic codes of testing scripts as well as a set of
testing thoughts and convention. Testing framework is not
only the basic codes of a group of standards and scripts of
automatic testing, but also the combination of testing

methods and practices. More and more software
organizations and individuals prefer using their own logic to
interpret automatic testing frameworks and establish suitable
frameworks according to their own product properties [4].
The framework established in this paper mainly has
following characters: First, it is based on the natural
language when developing testing use-cases. Second, the
Agilework supports distributed testing environment. Third, it
supports the applications which are based on web. Forth, it
supports multiple browsers. Those advantages are benefits
from the following components which are integreted:
Cucumber, STAF, and Selenium-WebDriver. Cucumber is
an automatic testing tool whereby executing functional
description text, which uses Gherkin as its descriptive
language to create an action-driven development tool based
on natural language [5]. Selenium-Webdrive is one of the
open source project of OpenQA, whose purpose is to develop
a cross-browser which is a contributed Web UI testing frame.
The predecessor of Selenium-Webdriver which is also called
Selenium 2 is Selenium, which developed into Selenium-
Webdriver after combined with another open source project,
Webdriver. Because it is free and easy to use, it attracts a lot
of enterprises and developers. STAF (Software Testing
Automation Framework) is an open-source framework which
supports multiple platforms and language frames. STAF is
about the reusable components and services, whose purpose
is to make software testing much easier, especially make it
easier to achieve the goal of testing automatically. In order to
adapt for the process of agile testing, Agilework frame is
aimed at developing testing and sorting testing report
automatically, which means fewer staffs are needed. When
testing cases are increased and changed, only a few changes
are needed to adapt for the new situation, which sets free the
staffs from the repetitive work. On the technical level,
because of the needs of testing project, frame especially
cares about cross-platform character, which is aimed at
covering the control systems of Windows, Linux, Solaris and
AIX and supporting the browsers of IE, Firefox and Chrome.

A. The structure of Agilework

As to the design of frame, in order to get better ability to
work on different platforms, most testing modules run on
JVM and use Juby as the main language. The reason of using
JRuby is that it is a completely object-oriented interpreted
programming language, which doesn’t need to compile
before running, moreover it has good readability, and
achieves the goal to call java class seamlessly. The structure
of Agilework frame is shown in Fig. 1:

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1379

Figure 1. The structure of Agilework framework

B. The Runing Principle of Agilework Framework

Fig. 2 shows testing environment includes Test Machine
and Automation Server. Shown as process 1 in Fig. 2,
Manual Trigger, Timer trigger, and Massage trigger are the
three triggers to start a testing. Manual trigger allows users to
run the testing when they need. Timer trigger allows users to
set the time to run the testing. Message timer starts the
testing through HTTP and Web Service. When finishing
compiling a product of testing, continuous integration system
will trigger the Scheduler Startup Testing shown as process 2.
System will run cucumber to load and analyze fundational
description file to call testing scripts. By calling testing
modules (STAF and Selenium-Webdriver), scripts achieve
the goal to do testing on remote testing machines shown as
process 3, 4, and 5. After testing, testing report will be sent
to the related staff by emails shown as process 6 in Fig. 2.

Figure 2. The runing principle of Agilework framework

C. Building Agilework Framework

First, integrated automatic testing environment, including
an integrated script environment, deployment of Agilework
framework and an automatic testing running environment
should be established. RubyMine is selected as the
debugging tool of script development in the Agilework.
RubyMine is known as the most intelligent IDE of Ruby and
Rails. As Fig. 3 shows, the code of the framework itself and
the code based on the framework can be checked out after
RubyMine has been downloaded and installed. And then the
code of project can be imported into the RabyMine. The
project includes many folders, such us comfig,
core_infrastructure, features 、 resources, step-definitions,
tmp, etc. Among these project folders, we focus on two of
them: feature and config folders.because these two are of
great importance. All of feature files for development are put
into the feature folder and configuration files are put into the
config folder. Various types of step are defined in the step-
definitions folder, such as the step for executing commands,
the step for clicking buttons and the step for writing data, etc.
These steps are available for the use of feature files. The
core_infrastracture includes many category files which give
the definition of all components for the step-definitions using,
such as the Button, checkbox and dialog components. Some
resources files such as the mail templates and the licenses of
the software are put into the folder of resource. The function
of the tmp folder is similar to the resource folder’s, however,
some temp files which may be covered or adapted by other
files almost every running time are put into the tmp folder.

Figure 3. The folder sturcture of RubyMine in interface developing

Furthermore, a distributed-testing environment that is
developed by virtual machine is needed. The STAF is used
when communicating between VM and server as well as
among the VM. In order to simplify the process of
developing the environment on VM, all browsers are
deployed on the server. Scripts use Selenuim-WebDriver to
drive browsers to perform the relative operations, and use
STAF to perform operations on other machines. After
automatic test, a testing report is generated and sent to
related staff through Email-Sender. STAF is used to

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1380

accomplish the communication among the machines, so a
STAF is needed between the Automation server and VM.
STAF is open-source and free, so it can be downloaded from
its official website http://staf.sourceforge.net/directly. When
a STAF is downloaded, it contains all the internal services,
besides, all the other external services that will be needed
also can be downloaded from this official website, then
modify the configure file, staf.cng to add the relative external
services into it. Before running automatic scripts, we should
make sure that every machine’s STAF is already started up
and that they can communicate with others. We can use
service ping to test whether it can communicate between two
machines.

III. THE APPLICATION EXAMPLES OF AGILEWORK

FRAMEWORK

A. The core of Agilework framework -- the testing based
on the testing scenarios

By integrating the Cucumber into the Agilework, testers
of automatic testing can not only use natural language to
describe the user scenarios but also execute the scenarios to
get the effect of the test. Cucumber can make the automatic
testing codes more easy and direct to understand. Anyone
who enjoys the relevant interest can use this function
description to discuss questions. It can use the key words: if,
when, and so to indicate attributions of these steps. ’if’ often
shows preconditions, ’when’ express actions, the word ’so’
shows verification conditions. How the Cucumber
understand the descriptions inside the scenarios? Actually,
script developers are needed to write the step definitions.
Each step matches the relative step definition whereby
regular expressions, then execute the content inside it. The
codes inside step definition can perform relative operation
according to descriptive steps of scenarios. The following is
a testing use-case based on the scenarios: a scenario of a user
installing the performance monitoring software A.

Function: install software A.
In order to use the lastly-buying performance monitoring

system and manage my server, I, as the administrator of
information service center, want to install this system well.

Scenario: install software A.
Assumed that I have put the installation CD into the CD-

ROM, so when I click the installation icon, the installation
interface should be showed. When choosing the “agreement”
in installation interface, clicking the button ’next’, inputting
the route of installation and click the start-installation button,
the finishing interface should be showed. When clicking the
finish button, the installation interface should be closed.

Furthermore, the logs do not include “WARN, ERROR”
errors.

It is based on text that Agilework accomplishes
automatic testing and realizes the description of function.
The advantage is that there is no need to use two sets of
description of manual test and automatic test.

B. Testing baseed on remote control system

Agilework achieves remote control mainly through open-
source frame STAF and provides an efficient and little

resource occupied executive platform of reusable testing
components, making testing components have the maximum
of reusing. For example, the components of Files System,
Process, and FTP can control the operation of machine’s files,
FTP and system processes. Besides some STAF own
components, users can realize testing components of self
definition according to interfaces provided by STAF. The
following is an example of the description of how the
framework can realize the distributed log check.

1) The design and realization of log-checking
components

STAF gives the coding interfaces
STAFServiceInterfaceLevel30 for self-definition
components, which includes the methods that the developer
must implement. The methods are as follows:

STAFResult init(InitInfo info)
STAFResult acceptRequest(RequestInfo info)
STAFResult term()
When the services are initiated, they will call init

function to register the service, then clog itself and wait the
request.when a request is coming, it will recall the
acceptRequest function to create a new RequestInfo’s
example whereby request’s commands and parameters, and
introduce into the acceptRequest function as the parameters.
Inside the acceptRequest function, users can realize the
concrete functions. At last, term function will be called while
uninstalling service, and developers should release resources
at this point. According to Fig. 4, LogCheckService which is
defined by users themselves are implemented from the STAF
service interfaces. Concrete log analyzing logics are in the
LogReader category, which can check it by setting log levels.

Figure 4. LogCheckService UML

2) The log-checking components and the integration of
framework

All the services that are written by users will be deployed
at each testing machines, and testing server will call the
functions inside long-range service whereby STAF’s
command styles. Fig. 5 shows us that, by loading the file

LogReader
public String[] logs()
public String[]
logs(Integer start)
public String[]
logs(Integer start,
Integer end)
public Integer length()
public String
getSprator()
public void
setSprator(String
sprator)
public String[]
getFilter()
public void
setFilter(String[] filter)

LogCheckSer
vice

STAFServiceInterfa
ceLevel30

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1381

STAF.jar, JRuby can control STAF process whereby codes
to sent commands to remote testing machines. These
machines check the log files whereby user self-definition
services. At last, LogCheckService will return the result, and
we can use the result to judge whether error appeared during
the testing period.

Figure 5. The invokeing process of STAF service

3) An Example of Log Checking Components in
Agilework Framework

By using natural language to describe the users’ usage
scenario, it is possible to decrease the difficulties and cost of
automatic testing. As shown in the Fig. 6, it uses STAF port
to do remote invocation.

Figure 6. process of remote invocation

When the scenario run the step that the log does not
contain the bug of “WARN ERROR”, it will match the
following step definition:

Then do |severe|
 log_checker = LogChecker.new()
 log_checker.check(severe)
end
At last, it will create an instance for the log testing

category and call the check method to test according to the
level of the serious situation. Testers only need to correct
scene description file to adjust the serious level of the log
according to the needs without revamping the the test codes.

The statements shown above use the prosses of testing
log file to explain the operation process of the Agilework
automatic testing frame. Becasue of the limition of the pages
other cases are not provided.

IV. CONCLUTION

In conclusion, because it integrates the modules with
Cucumber, STAF and Selenium-WebDriver, testing frame
Agilework has the characters of testing cases based on
natural language, supporting distributed testing environment,
supporting the testing based on web applications, and
supporting multi-browsers. Automotic testing which are
successfully and effectively applied in agile software can
significantly improve the agility of testing.

REFERENCES
[1] Shen Lei, Shen Bei-jun. Research and Practice of Agile Methodology

[J], Computer Engineering 2005(7)

[2] Zhou Fei-yu. Design and Implementation of an Automated Testing
Platform [D], Beging jiaotong university 2009

[3] NI Ming, HUANG Ping. Script-based Component Test Automation
Framework [J], Computer Engineering 2010(6)

[4] Hu Hui-fen, The Research and Application of Software Test
Automation Framework [D]，Xidian University 2008

[5] Cucumber. http://cukes.info/

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1382

