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Abstract-Nonconvex nonsmooth potential functions have 
superior restoration performance for the images with neat 
boundaries. However, several difficulties emerge from the 
numerical computation. Thus the graduated nonconvex (GNC) 
method is suggested to deal with these problems. To improve 
the performance of the GNC method further, a class of 
nonconvex nonsmooth approximate potential functions have 
been constructed in this paper, which can help our get a better 
initial value of the original problem. The numerical results 
show the restored quality and efficiency of the proposed 
methods. 
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I. INTRODUCTION  

Digital image restoration has a wide application in 
various areas including Navigation, Biomedicine and so on 
[1-2]. In general, the relationship between the original  
image lf R∈  and the observed image qg R∈  is:  

 g Hf b= + ,                                   (1) 

where the spatial-invariant matrix q lH R ×∈  represents the 
degradation systems caused by problems such as motion 
blur and distortion radiation. l m n= ×  ( m  and n  represent 
the number of rows and columns respectively when image is 
expressed as a matrix). qb R∈  is the additive noise.  
    The aim of the image restoration is to obtain an estimate 
of the original image f  according to some knowledge 
about H , g , and b . However it often tends to be very ill-
conditioned when the reverse process of the model (1) is 
only used to get ideal solution f̂ . Thus one of the effective 
ways to solve the problem is to combine some priori 
information of the original image and define the  

regularization solution, i.e., f̂  is a minimum point of the  

following cost function (energy function) :  
( ) ( ) ( )J f Hf g fθ β= − + Φ ,                 (2) 

where : qR Rθ →  is a measure of the difference between 
Hf and g . Φ  embodies the priori information, and a 
regularization parameter 0β >  is used to control the 
tradeoff  between the terms θ  and Φ . 

In general, we set the additive noise meets Gaussian 

distribution, then 
2

2
( )x xθ = . The regularization term 

2
( ) ( )i

i I
f D fφ

∈

Φ = , where {1,2, , }I l=  , : R Rφ +→  is 

a potential function with { : 0}R t R t+ = ∈ ≥ . The matrix 

: l s
iD R R→  is the difference operator which can be 

viewed as a s l×  matrix and used to create the difference 
vector between i th pixel and its s  neighboring pixels.  
Generally, s  is selected as 2. 
    In the image restoration, potential function φ  plays a key 
role so that it is intensively studied[3-11]. For the images 
with neat boundaries, nonconvex nonsmooth potential 
functions have superior restoration performance from the 
theories and numerical experiments, but it also causes 
several difficulties in numerical computation[6-8]. For 
example, gradient-based methods are inappropriate, global 
minimum point can not be attained. Thus the graduated 
nonconvex (GNC) method[9-11] is widely employed. Even 
though the global convergence of this method could not be 
guaranteed, the experiment results show that the energy in 
(2) is lower than many famous methods such as simulated 
annealing and so on[12-13]. However, most nonconvex 
smooth approximate potential functions can track the 
performance of the nonconvex smooth potential function 
perfectly, but they could not do very well when potential 
function is nonconvex nonsmooth. So a class of nonconvex 
nonsmooth approximate potential functions is introduced 
in [10-11]  and the good restored performance is obtained.  

To improve the performance of the GNC method further 
when the potential function is nonconvex nonsmooth, in this 
paper, we construct a new class of nonconvex nonsmooth 
approximate potential functions 

kεφ  whose similarity 

between 
kεφ and φ , as well as 

kεφ and  prior approximate 

potential function 
1kεφ

−
could be easily controlled, specially 

for the given kε . The numerical results in section III  will 
indicate the performance. 

In the following discussions, we let { | 0}R t R t+ = ∈ ≠ , 
* { | 0}R t R t+ = ∈ > , ( ) { | 0}lHer H x R Hx= ∈ = . For the 

convenience of later discussions, the lemma below is 
introduced to summarize the basic properties of φ  and 

kεφ . 
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Lemma [11]1  Let 
Nεφ =φ , if potential function φ  and 

approximate potential function 
kεφ ( 1,2, , )k N=  satisfy: 

1) ( ) ( ) 0Ker H Ker D∩ = ,  where 1 2[ , , , ]lD D D DΤ Τ Τ Τ=  ; 
2) ( )tφ  is continuous and symmetric on R  and increasing 

on R+ , (0) 0φ =  and  ' (0 ) 0φ + > , ''lim ( ) 0
t

tφ
→∞

= ;  

3) 2( )t Cφ ∈ ( * /R M+ ), where 
' ' '' ''{ | ( ) ( ) ( ) ( ) 0}M t R t t and t tφ φ φ φ+ − + − += ∈ > − ∞ < < ≤  

is a continuous set of points(possibly empty); 
4) '' (0 ) 0φ + < , '' ( ) 0tφ ≤ and increasing on * /R M+ ; 

5) Both ' (0 ) 0φ + > and ''(0 ) 0φ + < are finite, 
0

'( ) (0 ) | |t tεφ φ += ; 

6) for each [0,1],kε ∈ ( )
k

tεφ  is continuous and symmetric 

on R , ( )
k

tεφ 2 *( )C R+∈ -smooth, (0) 0
kεφ = , '' ( ) 0

k
tεφ < on 

R+ , both ' (0 ) 0
kεφ + >  and '' (0 ) 0

kεφ + < are finite. 

Then '( ) ( ) (0 ) | |
k k k

t t tε ε εϕ φ φ += +  satisfies: 

1) 
0
( ) 0tεϕ = , 

1

'( ) ( ) (0 ) | |t t tεϕ φ φ += −  for all t R∈ ; 

2) ' (0) 0
kεϕ = , 

0

2( )t Cεϕ ∈ and '' ''( ) ( ) 0
k k

t tε εϕ ϕ− = < on R . 

 

II.   The New Nonconvex 

Nonsmooth APPROXIMATE POTENTIAL FUNCTION 
 

In this section, we will propose a new class of approximate 
potential functions with perfect performance, specially, for 
the given kε .  

When φ  is nonconvex nonsmooth, a series of approximate 

potential functions 
kεφ  are constructed to approach φ  

gradually so that a good initial value can be obtained in GNC 
method. It is worth noting the restoration performance will 
not be stable enough, when the difference between 

kεφ  and 

φ  is too large or small, as well as the difference between 

kεφ and 
1kεφ

−
( 1k ≥ ), so the similarity between 

kεφ and φ , 
kεφ   

and 
1kεφ

−
are very important. In this paper, firstly, we select  

the following potential function as example: 

                                   
| |

( )
1 | |

tt
t

αφ
α

=
+

 ,                           (3)  

then the nonconvex nonsmooth approximate potential 
function 

k

old
εφ  in [11] is: 

| |
( )

1 | |k

old

k

tt
tε

αφ
ε α

=
+

.                          (4) 

We can know from [11] that it has a good performance since 
the similarity between 

kεφ  and φ , 
kεφ  and 

1kεφ
−

can be 

controlled by different n . However it is hard to change the 
similarity  for the given kε .  

To overcome this drawback of 
k

old
εφ , we consider the  

approximate potential function: 
| | ( | | 1)

( )
1 | | ( | | ) | |k

new k

k k k

t c tt
c t c t tε

α εφ
ε ε ε α

+=
+ + +

,              (5) 

where 0c >  is a constant. Obviously, 
k

new
εφ   is nonconvex 

and nonsmooth, 
k

new
εφ (0) (0)φ= , lim

t→∞
( )

k

new tεφ = lim
t→∞

( )tφ ,  and  

n

new
εφ = φ , then the similarity between 

n

new
εφ and φ is 

guaranteed. More importantly, constant c  can be used to 

control the similarity between 
k

new
εφ  and φ , 

k

new
εφ and 

1k

new
εφ

−
for 

the given kε . To see this clearly, Figure 1 (a) and (b) are 

drawn to illustrate the similarity between 
k

new
εφ  and φ , 

k

new
εφ and 

1k

new
εφ

−
how to be influenced by the parameter c  

respectively. From Figure 1, we see that the parameter c  can 

not only control flexibly the similarity between  
k

new
εφ  and φ , 

as well as  
k

new
εφ and 

1k

new
εφ

−
 in the neighborhood of the origin 

for the given kε , but also keep the nonconvexity 

nonsmoothness. This is helpful for us to get more effective 
restoration (the intensity often be set from 0 to 1). 
 

 
                                                  (a) 

 
                                                   (b) 

Fig. 1. New approximate potential functions: (a) 2,α = kε  =0.1, and 

different .c  (b) 2,α = kε  =0.1,  1kε − =0 and different .c  

  
   To show the performance of 

k

new
εφ in (5) further and for the 

convenience of later discussions, the numerical results based 
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on the two algorithms in [11](denoted by algorithm I and 
algorithm II) are reported in subsection III. From these 
numerical results, we see that 

k

new
εφ in (5) has perfect 

restoration performance over 
k

old
εφ .   

Remark 1.  In general, φ  can also be chosen as: 

| | (0 1)t α α< <  ,    log( | | 1)tα +  
and more choices can be found in [10-11],  new approximate 
potential functions for them can be defined similarly.  

II. EXPERIMENTAL RESULTS 

In this section, numerical experiment for two tested 
images will be provided  to show the performance of 

k

new
εφ . 

All computations are performed using MATLAB2010a with 
Core(TM)2CPU with 2.83GHz and 3.87GB of RAM. Since 
the noise is a gaussian distribution, we report the average  
value of ten tests. 
   The tested images are UTK and Cameraman(CR). φ , 

k

old
εφ  

and 
k

new
εφ are defined as (3)-(5) respectively. CPU time is 

used to compare the efficiency of the restoration, and the 
quality of the restored images is measured by Peak signal-
to-noise ratio (PSNR): 

( , )

2
1020log ( )

kjf f
PSNR

mn

ε −
= − , 

It is easy to verify that 
k

new
εφ  satisfies the conditions of 

Lemma 1.  Two algorithms in [11] will be used to show the 
performance of them. As in [11], we set absolute error(Abs) 
is 410− , max iterations is 1000, the regularization parameter 
β =0.015, 0.5α = . The initial value of ω  is 0.05, and its 
value is updated by 1.8ω  at each inner iteration, n=20. The 
step size used in the  Chambolle's method is 0.25. The tested 
blurring function is chosen to be truncated 2-D Gaussian 
function: 

2

2 2

( , ) exp( ), 3 , 3,
2

s th s t s t
σ

− −= − ≤ ≤  

where three sets of parameters are chosen as: (1) 1σ = , the 
support is 7 7× , and the standard deviation of noise is  0.05; 
(2) 1.5σ = , the support is 9 9× , and the standard deviation 
of noise is  0.1 ; (3)  2σ = , the support is 11 11× , and the 
standard deviation of noise is 0.2. To illustrate the stability 
of the parameter c , it is selected as 0.02 and 0.03 
respectively. 

Figures 2-3(a) show the original  images. Figures 2-3(b) 
show the observed images. Figures 2(c) shows  the restored 
UTK image by the algorithm I in [11] with

k

old
εφ , Figures 2(d) 

shows the restored UTK image by the algorithm I in [11] 
with

k

new
εφ ,  where the standard deviation of noise is 0.1, the 

support is 9 9× , and  c =0.02. Figures 3 (c) shows  the 
restored CR image by the algorithm II the method in [11] 
with

k

old
εφ , Figures 3(d) shows  the restored CR image by the 

algorithm II in [11] with
k

new
εφ , where the standard deviation 

of noise is 0.2, the support is11 11× ,  and  c =0.03.  With 
different c , more restoration results will be summarized in 
Table 1-4. 
 

          
        (a)                                                          (b) 

          
(c)  (d) 

Fig. 2. The restored UTK images by algorithm I with different approximate 
potential functions, the standard deviation of noise is 0.1, the support is 
9 9× , c =0.02. (a)  Original image. (b) Observed image. (c) Image 

restored by algorithm I in [11] with 
k

old
εφ .  (d) Image restored by algorithm 

I in [11] with 
k

new
εφ . 

 

          
                           (a)                                                           (b)                                

          
  (c)                                                           (d) 

Fig. 3. The restored CR images by algorithm I with different approximate 
potential functions, the standard deviation of noise is 0.2, the support is 
11 11× , c =0.03. (a)  Original image. (b) Observed image. (c) Image 

restored by algorithm II in [11] with 
k

old
εφ . (d) Image restored by algorithm 

II in [11] with 
k

new
εφ . 

 

TABLE 1   Algorithm I with 
k

old
εφ  and 

k

new
εφ  when 0.02c =  

 
  observed old new 

NOISE BLUR PSNR PSNR CPU PSNR CPU

C 0.05 7 24.74 26.22 5.10 26.56 4.32

 0.1 9 21.21 22.64 7.52 22.77 5.50
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R 0.2 11 17.21 18.44 8.41 18.46 6.84

U 0.05 7 27.85 31.73 10.87 31.88 8.01

T 0.1 9 23.09 25.73 17.58 26.06 14.99

K 0.2 11 18.05 18.79 23.03 18.82 16.03

 

TABLE 2   Algorithm II with 
k

old
εφ  and 

k

new
εφ  when 0.02c =  

 
  observed old new 

 NOISE BLUR PSNR PSNR CPU PSNR CPU

C 0.05 7 24.74 26.22 2.17 26.22 1.72

 0.1 9 21.20 22.59 2.34 22.63 1.90

R 0.2 11 17.21 18.43 2.26 18.39 2.20

U 0.05 7 27.84 31.74 4.20 31.80 4.13

T 0.1 9 23.07 25.74 4.34 25.77 3.91

K 0.2 11 18.04 19.76 4.27 19.77 4.05

 

TABLE 3   Algorithm I with 
k

old
εφ  and 

k

new
εφ  when 0.03c =  

  
  observed old new 

 NOISE BLUR PSNR PSNR CPU PSNR CPU

C 0.05 7 24.72 26.22 5.10 26.56 4.32

 0.1 9 21.22 22.64 7.52 22.67 5.50

R 0.2 11 17.21 18.43 8.41 18.78 6.84

U 0.05 7 27.86 31.73 10.87 32.01 8.01

T 0.1 9 23.08 25.70 17.58 25.73 14.99

K 0.2 11 18.06 18.79 23.03 18.82 19.03

 

TABLE 4   Algorithm II with 
k

old
εφ  and 

k

new
εφ  when 0.03c =  

 
  observed old new 

 NOISE BLUR PSNR PSNR CPU PSNR CPU

C 0.05 7 24.73 26.33 2.16 26.52 1.90

 0.1 9 21.22 22.69 2.50 22.67 2.01

R 0.2 11 17.21 18.42 2.31 18.33 1.74

U 0.05 7 27.84 31.63 4.22 31.71 4.01

T 0.1 9 23.08 25.77 4.31 25.83 3.99

K 0.2 11 18.04 18.79 4.27 18.92 3.63

 
 

From Fig. 2-3, we see that we can get the better restored 
images by algorithms I and II in [11] with 

k

new
εφ  in most 

cases. Tables 1-2 report the restored PSNR and CPU times 
for algorithm I and algorithm II in [11] with 

k

old
εφ  and 

k

new
εφ  

respectively, when 0.02c = . Tables 3-4 report the restored 
PSNR and CPU times for algorithm I and algorithm II in [11] 
with 

k

old
εφ and

k

new
εφ  respectively, when 0.03c = .We could see 

that that algorithm I and algorithm II in [11] with 
k

new
εφ  is 

faster than  the algorithm I  and algorithm II in [11] with 

k

old
εφ  in any case.  The restored quality has been improved in 

most cases. 

III. CONCLUDING REMARS 

In this paper, we propose one kind of approximate 
potential function to improve the performance of the GNC 
method further in image restoration. Extended numerical 
experiments have been given to illustrate the restored 
qualities and efficiencies. It has been shown that the 
restored quality is litter better than the methods in.[11], but 
the efficiency is significantly higher in any case. 
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