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Abstract—A novel and easy to realize approach for Voice 
Activity Detection (VAD) is proposed based on the 
source-filter speech model in the application of 
Linear-Prediction-structure speech coding. Generalized 
Likelihood Ratio Test (GLRT) is adopted to formulate the 
voice activity detector which contains an unvoiced speech 
detector and a voiced speech detector respectively. By 
exploiting the linear predictive analysis coefficients and the 
pitch information produced in the speech coder, the two 
separate detectors work effectively in uncorrelated noise 
without increasing computational complexity significantly. 
Experimental results show that the unvoiced speech detector 
outperforms conventional algorithm used in speech coding 
under various noisy conditions. 

Key words-Voice Activity Detection； Generalized Likelihood 
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I. INTRODUCTION  

Voice Activity Detection (VAD) has become an attractive 
research  topic since the last century with wide application 
in speech coding[1], speech enhancement[2], and mass 
storage of speech or audio[3] etc. A speech coder can reduce 
the computational cost and the average transmission bit rate 
by correctly classifying speech and noise[5]. Taking G.729B, 
the bit stream only contains 15 bits for a non active voice 
frame while that of an active frame is 80 bits.  

Speech can be classified into two types: voiced speech 
and unvoiced speech. Voiced speech signal always contains 
a pitch, which is a conspicuous characteristic differs from 
unvoiced speech and noise signal. And it also has a large 
signal-to-noise ratio (SNR) in usual speech communication 
environment which is favorable for detecting voiced speech 
from noise. Unvoiced speech signal, the other type of the 
speech signal, can be modeled as a noise-like source 
modulated by the vocal tract. The noise-like property and the 
relatively low energy make the feature extraction of 
unvoiced speech has to work in the disadvantageous 
circumstances. 

A general VAD algorithm is composed of a feature 
extraction module and a classification module. In the past 
two decades, various feature extraction algorithms have been 
proposed [6]-[9]. G729B is a well-known method, in which 
non active voice frames were separated by employing line 
spectral frequencies, short-time energy, low-frequency 
energy and zero-crossing rate as features. High-Order 
Statistics (HOS) [8], adopt the property that High-Order 
Moments of white Gaussian noise are zero while those of 

voiced speech are non zero. And some further approach 
based on HOS feature has been described in[6,7]. The 
High-Order Moments of unvoiced speech adjacent to the 
voiced speech are non zero, which is a characteristic of the 
unvoiced speech. So the HOS-based features e.g. 
log-kurtosis (LK)[7] and skewness-to-kurtosis ratio (SKR)[8] 
are claimed to be useful to detect unvoiced speech signals. 

Considering the stochastic/deterministic model of the 
source of speech signal and uncertain existence of voiced or 
unvoiced speech, this paper presents a voice activity detector 
using a time-domain speech production model associated 
with the traditional vocal tract model of linear predictive 
filtering. Because of the existence of unknown parameters of 
vocal tract, acoustic source and additive noise, a generalized 
likelihood ratio test (GLRT) is integrated in VAD problem. 
Meanwhile, the LP coefficients from speech coder are 
adopted to avoid the additional calculation.  

The remainder of this paper is organized as follows. In 
Section 2 the stochastic/deterministic model of speech signal 
with vocal tract filter is explained. Section 3 deduces the 
GLRT detector of speech in uncorrelated noise. Optimized 
and practicable detectors of unvoiced speech and voiced 
speech are generated respectively. Comparative 
experimental results are shown in Section 4, followed by the 
conclusions and future work in Section 5. 

II. STOCHASTIC/DETERMINISTIC SPEECH MODEL 

Human speech is originated from the airflow generated 
by lungs, which is then sent to the laryngeal. The laryngeal 
modulates the airflow and generates the acoustical source of 
speech: periodic pulse by vibration of vocal tract for voiced 
speech or noise-like signal when vocal tract no longer 
vibrating for unvoiced speech. A reasonable model of the 
source of speech signal can be established as: 

0[ ] cos(2 ) (1 ) [ ], 0,1,...,
K
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r m A f im g m m Mθ π ϕ θ
=

= + + − =      (1) 

Where， M is the number of sampling points in a piece 
of speech signal. Parameters iA , iϕ , 1,2,...,i K=  are the 
amplitudes and the phases of each harmonics, whose 
fundamental frequency is denoted by 0f . These three 
parameters consist of the deterministic part of source signal. 
The latter part of (1), also the stochastic part, stands for the 
source of unvoiced speech by g[n], which is always modeled 
as a Gaussian random signal with zero-mean and 
variance 2

sσ .  
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Vocal tracts, including mouth and nasal cavity, color the 
source by shaping the frequency components, which 
produces the human speech. Although uniform tube model is 
a fundamental and ideal model of the vocal tract, practical 
vocal tracts could also be modeled as a filter with some 
formants. Linear predicting (LP) filter, h[n], an all-pole filter, 
has been widely applied to model the vocal tracts and 
denoted in Z-domain by: 
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Where L is the order of linear predictive analysis filter 
and 1 2( , ,..., )La a a  are the linear predictive coefficients. In 
brief, (1) and (2) formulate an effective model of general 
speech in time domain and are then incorporated in the 
proposed detector. 

III. GENERALIZED LIKELIHOOD RATIO TEST OF SPEECH 

SIGNAL 

Assuming speech signal is degraded by additive noise, 
then the voice activity detection could be described as a 
binary hypotheses: 
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1
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Where ( [1], [2],..., [ ])TS s s s M=  and ( [1], [2],..., [ ])TN n n n M=  are 
clean speech and noise presented by different harmonic 
components respectively. A reasonable assumption of noise 
N is that it is obeying a Gaussian distribution: 2~ (0, )NN N Iσ . 
Incorporating the source-filter model deduced in previous 
section, the hypotheses come to: 

0

1
1

:

:

H X N

H X S N A R N BR N−

=

= + = + = +
   (4) 

R  is the source of speech of signal and matrix A  is 
determined by L linear predictive coefficients defined in (2) 
while B  is the inverse matrix of A . Revisiting (1) and 
using the Trigonometrical Transform, R  could be 
represented in a vector form by: 

(1 )R H Gθ β θ= + −     (5) 

Where  
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So the hypotheses can be characterized as follows: 
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Using the generalized likelihood ratio test, the detector 
is considered as: 
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As θ  is zero when speech signal is absent and equals 
one when speech signal is present respectively, a further 
form of the detector is: 
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And the two likelihood ratio functions could be 
summarized as: 
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The interesting results reveal that the detector could be 
factored into simple problems consisted of (9) and (10). 
Fortunately, Matrix B  and H do not need a great quantity 
of computation because the estimation of pitch and linear 
predictive coefficients is completed by the LP-structure 
speech coder. The process is shown in the figure: 

 
Figure 1.  The Proposed Detector Cooprated with LP-Structure Speech 

Coder. 

A. L1 — Detector of Voiced Speech 

With the Gaussian assumption and model linearity, the 
minimum variance unbiased (MVU) estimator of unknown 
parameters β should be directly calculated by: 

1ˆ (( ) ) ( )T TBH BH BHβ −= x  

Adopting the discussions above, the voiced speech 
detector can be described as: 
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1
1( ) (( ) ) ( )T T TL BH BH BH BH−=x x x    (11) 

B. L0 — Detector of Unvoiced Speech 

0T , a replacement of 0L  is used for convenience: 

2 2 2 1 2
0 2

1
( ) [ ( ) ] 2T T

N R N N
N

T I BB Iσ σ σ σ γ
σ

− ′= − + >x x x  

In a speech coding application, SNR of the unvoiced speech 
is relatively low while prediction gain is large, and thus 
variance of source of unvoiced speech is far smaller than 
that of the additive noise: 2 2

R Nσ σ<<   .Exploiting that 
property and omitting the irrelevant variables and 
parameters, the detector can be finally simplified: 

0 ( ) ( ) ( )T T TT B B=x x x     (12) 

The demonstration and deduction would not be 

elaborated herein. 

IV. EXPERIMENTAL RESULTS 

To prove the effectiveness of proposed unvoiced speech 
detector, this section will provide our experimental results 
with comparison with other feature extraction method by 
Receiver Operating Characteristic (ROC) curves. 

According to the analysis of two sub-detectors, L1 and 
L0 detectors, are designed to detect voiced speech signal and 
unvoiced speech signal, respectively. L1 detector is 
well-known to be an effective one to detect the harmonic 
signal, which represents most of voiced speech. Thus, the 
experiment only focus on evaluating the performance of L0 
detector with the database composed of unvoiced speech 
signals. Speech signals are uttered by males, females and 
children including multiple kinds of languages like English, 
Chinese, French, and Japanese. Exactly, one thousand 
unvoiced speech frames are manually separated from the 
natural speech samples and mixed with Gaussian noise with 
different SNR. 

Figure 2.  ROC curves of propose L0 detector, log-kurtosis feature, and energy detector of unvoiced speech signal at -3dB, -5dB, -7dB and -9dB SNR. 
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ROC curves depict the relationship between false alarm 
rate and probability of detection in a certain SNR. 
Probability of detection refers to the probability of correctly 
detecting the unvoiced speech frames while false alarm rate 
refers to the probability of wrongly classifying the noise 
frames as the unvoiced speech frame. Three methods, 
proposed L0 detector, log-kurtosis feature[7] and energy 
detector[5], were compared together. And the additive noise 
is the white noise from NOISEX92 database[12]. 

From four figures, proposed detector nearly increases 
the probability of detection in all SNR conditions and the 
false alarm rates are lower compared to the other two 
metrics. In fact, the traditional energy detector could be 
simplified from proposed L0 detector by approximately 
adopting TBB I= : 

( ) TT ′ =x x x  

It is just the traditional detector with the assumption that 
unvoiced speech is a white Gaussian process. In this view, 
the significant improvement of proposed L0 detector over 
tradition energy detector lies in the incorporation of a more 
proper model (vocal tract information) for the unvoiced 
speech in the detection problem. 

V. CONCLUSION 

In this paper, we proposed an unvoiced speech detector, 
which is applicable to Linear Prediction structure speech 
coder. It revisits voiced or unvoiced speech production 
model: the stochastic/deterministic Gaussian source signal 
modulated by vocal tract model, which is involved with 
some unknown parameters including linear predictive 
coefficients, source parameters, pitch information, and 
noise parameters. According to the maximum likelihood 
estimation rule, the statistical test could be divided into two 
sub-detectors, and the outperformance of the unvoiced 
speech detector has been verified in previous section. By 
exploiting the Linear Predictive coefficients and pitch 
information which are products of the speech coder, the 
proposed detector works effectively with little increase in 
computation. 
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