

Abstract—Traditional ways to implement Domain Name System
(DNS) cache backup are to dump the full DNS cache to some
document/database periodically, which can bring great negative
impact on DNS cache’s performance. In this paper, based on a
newly redesigned DNS cache architecture, we suggest an
optimized DNS cache backup method in which a dynamic
incremental DNS cache synchronization mechanism is
introduced.

Keywords-DNS; cache; backup

I. INTRODUCTION

The Domain Name System (DNS) is a distributed
database that provides a directory service to translate domain
names to Internet Protocol (IP) addresses [1] [2]. As one of
the largest distributed system in the world, DNS consists of a
hierarchy of name servers, with 13 root name servers at the
top. For such a hierarchical system, caching is critical to its
performance and scalability. To determine the IP address of a
domain name, the DNS resolver residing at a client first sends
a recursive query to its local DNS name server. If no valid
cached mapping exists, then the local DNS name server will
resolve the query by iteratively communicating with a root
name server, a Top-Level Domain (TLD) name server, and a
series of authoritative DNS name servers. All the replied
DNS messages including referrals and answers are cached at
the local DNS name server so that subsequent queries for the
same domain name will be answered directly from the cache.
Therefore, DNS caching significantly reduces the workload
of root and TLD name servers, lookup latencies, and DNS
traffic over the Internet.

Actually, caching has been an integral part of the DNS
since its description in related RFCs. To support a certain
degree of consistency, each DNS resource record has a
Time-to-Live (TTL) value set by the administrator of the
domain name specifying when it expires from the local DNS
server’s cache. Therefore, a cache miss will happen in the
case of TTL expiration or first access to a domain name. In
this case, the record must be re-fetched from the original
authoritative DNS name server on query.

There have been many valuable studies conducted on

This work is supported by the China Next Generation Internet Project
(Project name: the Next Generation Internet’s Trusted Domain Name System;
No.: CNGI-09-03-04).

performance of the TTL-based DNS caching mechanism
during the past decade, in which the effect of varying TTLs
on DNS cache hit rates are well explored [3] [4]. Note that
besides the TTL factor, DNS cache miss can also be caused
by first access to a domain name as mentioned above. Let us
imagine the worst case: if all existing cached data are erased
from DNS cache because of the local DNS name server’s
reboot for some unavoidable reasons (such as server crash),
then the local DNS name server will suffer tremendous cache
misses at the beginning of the reboot. Obviously, this result is
not expected by operators of either local DNS name servers or
authoritative DNS name servers, especially for these large
Internet Service Providers.

An effective way to avoid this happening is to backup the
DNS cache. Traditional means is to dump the DNS cache to
some document/database periodically. Once the DNS cache is
cracked down, the latest version of theses backup
documents/databases can be loaded immediately after the
DNS cache is restarted. In this way, a relative high cache hit
rate can be well maintained. However, there are also some
inevitable problems with this idea: first, a full copy of DNS
cache needs to be read/written and transported during the
dump/load procedure; second, the DNS cache must be locked
during the dump/load procedure which can bring visible
negative impact on DNS cache’s performance. Obviously,
both of them are not efficient for local DNS name servers,
especially for these busy ones. To overcome these
shortcomings, it is necessary to make some improvements on
the DNS backup procedure. In this paper, based on a newly
redesign of DNS cache architecture, we suggest an optimized
DNS cache synchronization mechanism between two DNS
caches, in which the DNS cache can be backed up to the other
one dynamicly and incrementally and most of the important,
the DNS cache’s performance can be well maintained during
this procedure.

The rest of this paper is organized as follows: Section II
introduces our DNS cache requirements in which the overall
DNS cache architecture is redesigned here. Section III details
our proposed DNS cache backup mechanism. Finally, we
conclude with a discussion of our work in Section IV.

II. DNS CACHE REQUIREMENTS

When investigating DNS query statistics of some large
local DNS name servers, we find that only a small part of
domain names are queried frequently [5], therefore, if the

Backing up your DNS Cache

Xuebiao YUCHI, Likun ZHANG, Liming WANG, Anlei HU, and Xiaodong LEE

China Internet Network Information Center
Computer Network Information Center

Chinese Academy of Sciences, 100190 Beijing, China
{yuchixuebiao, zhanglikun, wangliming, huanlei, lee}@cnnic.cn

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1438

information of these domain names are cached properly, the
performance of the DNS cache will be well improved.

Note that the basic unit of DNS cache should be DNS
message. Each DNS message can be stored in DNS cache for
a period of time determined by the TTL value of resource
record in it. Since DNS messages in DNS cache may share
common resource record set (RRset), to reduce the memory
usage of DNS cache, it is better to distribute DNS message
into two separate caches: Message Cache and RRset Cache.
Furthermore, because most of the DNS messages we
observed belong to class ‘IN’, in order to save the 16-bit class
processing time when querying in DNS cache, a
class-specific Message/RRset Cache is considered here.
Therefore, DNS cache holds a list of class-specific
Message/RRset Caches. When getting a DNS message,
dispatch it to a proper Message/RRset Cache based on class.
A typical Message (RRset) Cache manages a list of Message
(RRset) entries which are held in a hash table. As illustrated
in Fig. 1, entries in Message Cache only need to include some
index information for RRset entries.

Fig. 1. Different entries in Message Cache may share the same RRset entry.
On the other hand, one Message entry may contain multiple RRset entries’
index information.

The overall relationship between these objects mentioned
above is given in Fig. 2.

Fig. 2. Overall relationship between these different objects. Note that one
Message entry could include index information for multiple RRset entries.

In the rest of this section, the broad requirements of the

Message/RRset Cache will be detailed respectively.

A. RRset Cache

The key for one RRset entry in RRset Cache should be
“rrset_name + rrset_type”. In the value part, besides the
RDATA of each resource record in the RRset, there should be
the signature of RRset (RRSIG record) if it has, the
authoritative level (for the ranking, see section 5.4.1 in [6]),
and the security status (DNSSEC validation result) of RRset.

The expiration time for RRset entries in RRset Cache
should be “now + TTL”, any expired RRset should never be

used again. Once the local DNS name server gets a new query
result, the RRsets in the query result should be used to update
the RRset Cache if the RRsets are more authoritative than
those in RRset Cache.

In order to support dynamic DNS cache backup, the cached
data should can be dumped out, loaded from one file, and
edited in runtime. For RRset Cache, some key functions are
required:

Looking up RRset

It must be possible to look up RRset entry in the RRset
Cache: if the entry exists, return the information of this entry,
or else return NULL.

Adding RRset

If the added RRset does not exist in RRset Cache, this
RRset should be inserted as a new entry, or else update the
existing RRset entry according to the new value.

Deleting RRset

The interface for removing one RRset entry from the RRset
Cache should be provided, since it may be used by some
third-part tools which can edit the RRset Cache directly. The
simple way to delete one entry is to mark it as expired and to
re-fetch it.

Updating RRset

Since some RRset entries may be updated before their
expiration, the interface for updating RRset should be
provided. When a non-expired RRset entry is updated with a
new one, the new one should be more authoritative than the
existed entry.

Dumping/loading to/from one document/database

The content of RRset Cache can be dumped to one
document/database, so that the RRset Cache can be reused
when the local DNS name server is restarted. Extra RRset
expire time should be added when dumping, so that expired
RRsets can be ignored when loading RRset Cache from the
document/database.

B. Message Cache

The key for one Message entry in Message Cache should
be “query_name + query_type” and the value part should
include message header, index information for each RRset in
different sections, see the following sketch in Fig. 3. In
addition, the security status (DNSSEC validation result) and
the authoritative level (authoritative or non-authoritative) of
the Message should also be cached.

The expiration time for Message entries should be “now +
TTL (the lowest TTL of RRsets associated with them)”. Once
a Message entry expires, it should be re-fetched when it is
used. The DNS cache user should send out the query to some
authoritative DNS name server and update the Message
Cache when get the query result. Meanwhile, the RRset
Cache should be updated together with Message Cache. Note
that when updating the RRset Cache, whether to accept the

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1439

RRset in the query result, or retain the RRset already in the
RRset Cache, the relative authoritative level of the data
should be considered.

Fig. 3. The structure of a typical Message entry. Note that it does not include
any index information for RRSIG records, since they are saved together with
the original RRset as one of its attributes.

Similar to RRset Cache, some key functions required are

list below:

Looking up Message
It must be possible to look up Message entry in the

Message Cache:
If the entry expires or does not exist, return NULL.
If the entry exists and does not expire, then lookup its

corresponding RRsets in the RRset Cache. If one RRset
expires or does not exist in the RRset Cache, return NULL, or
else, generate one real reply DNS message and return it.

Adding Message

The interface for adding Message entries to the Message
Cache should be provided. When one Message entry is added,
its corresponding RRsets should be used to update the RRset
Cache, or insert into the Cache if they are not existed.

Deleting Message

The interface for removing Message entry from the Cache
should be provided. The simple way to delete one entry is to
mark it as expired and to re-fetch it.

Updating Message

Authoritative Message should never be updated by
non-authoritative Message.

Dumping/loading to/from document/database

The content of Message Cache can be dumped to one
document/database, so that the Message Cache can be reused
when the local DNS name server is restarted. Extra Message
expire time should be added when dumping, so that expired
Messages can be ignored when loading Message Cache from
the document/database. Note: RRset Cache should be loaded
first.

C. Other Considerations

1) In order to gain higher efficiency, these Caches should be

size-limited and configurable even in runtime-mode
either bigger or smaller. To determine which entry
should be removed when the Cache size reaches its
limitation, each Cache keeps a LRU (Least Recently
Used) list to track the managed entries by holding a list of
pointers to them. In this case, when an entry is created or
accessed, it should be moved to the end of the LRU list.
Once the Cache is resized smaller or reaches its size, the
entries at the head of the list should be removed.

2) The RRset/Message Cache must be thread-safe and it
will be useful in debugging if a way to completely empty
the Cache is provided.

3) The local DNS name server should provide the service
during the DNS cache loading procedure if it takes too
long time. (Hint for the implementation: If a short time,
we can construct the DNS cache before we begin
operations; if a long time, a separate component that
works through the procedure in the background and does
an “add if not here and if the stored data has not yet
expired and is more authoritative” should work.)

4) The supported class should be configurable. Therefore,
the local DNS name server should reject the query with
the class not configured. 1

Based on these requirements described above, a typical
DNS cache query algorithm can be generalized as follows:
1) When the DNS cache gets a query, finds the Message

Cache of the query class. If it cannot be found, return
NOT_FOUND error.

2) Find the Message entry in the Message Cache according
the key “query_name + query_type”. If it cannot be
found, return error NOT_FOUND error.

3) Check whether the Message entry has expired. If it
expires, return MESSAGE_EXPIRED error, or else go
to next step.

4) Find RRset entries in the class-specific RRset Cache
according to the RRsets information recorded in
Message entry. If any RRset has expired, return
RRSET_EXPIRED error, or else go to next step.

5) Generate the replied message according to the
Message/RRset entry information. (Note: If the query
does not request DNSSEC records, all the RRSIG
records, if they were cached, should be removed from the
generated message.)

III. DNS CACHE BACKUP

Based on these DNS cache requirements described in the
above section, our proposed DNS cache backup mechanism
will be detailed here.

A. Basic Idea

Data in DNS cache is transient, which requires that the
backup procedure should be implemented dynamically (or
periodically). Furthermore, the backup should also be

1Since class CH is useful for getting ID.SERVER and the like but nothing

useful in the caching side, and the only other class is HS which MIT can
supply a patch for, it is also recommended that only the class IN needs to be
supported by the DNS cache implementation.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1440

incremental in order to achieve high performance and save
the bandwidth. Therefore, the DNS cache being backed up
needs some kinds of updating lists to record changes in it
during a specific backup cycle: one deleting list to record
indexes for these entries to be deleted and one adding list to
record indexes for these entries to be added. Suppose we need
to back up DNS cache A to DNS cache B as shown in Fig. 4,
therefore, all Message/RRset Caches in A need to keep their
own lists of these two kinds, respectively. Then, based on
these lists, the DNS cache B can be updated incrementally.

Fig. 4. A typical DNS cache backup cycle from DNS cache A to DNS cache
B.

Note that these updating lists should be kept unchangeable

when they are utilized during DNS cache B’s updating
procedure (namely proc1 in Fig. 4), so their corresponding
Message/RRset Caches should not be updated during proc1,
in other words, these Caches should be kept read-only.
Therefore, some temporary Caches are needed to store these
new arrival entries during proc1.

When proc1 is completed, these updating lists will be
cleared and the read-only lock on Message/RRset Caches in A
will be removed. Then in procedure proc2, these Temp
Caches will be locked in which these new arrival entries will
be merged into their corresponding Message/RRset Caches in
A (Hint for the implementation: add if not here and if the
merged data has not yet expired and is more authoritative).

After performing procedures proc1 and proc2, a complete
backup cycle is finished.

B. Other Considerations

1) The interval between two backup cycles can be
configurable, being a trade-off between performance and
consistency. Furthermore, for performance consideration,
these updating lists should also be size-limited. In this
case, once one of these updating lists reaches its
limitation, next backup cycle should be triggered
immediately even though the configured interval has not
yet arrived.

2) At the beginning of the backup, the initial adding lists
should be the same as the LRU lists on DNS cache A,
while the initial deleting lists should be empty. Note that
this also applies with the case that the DNS cache B is
restarted during the backup.

3) When performing procedure proc1, if the total size of
adding list and deleting list for a specific Message/RRset
Cache exceeds the Cache’s current size, it is better to
dump the overall Cache directly in order to improve
performance.

IV. DISCUSSIONS

Since these updating lists kept in DNS cache A are
configured to be size-limited, the procedure proc1 can be
carried out very quickly, therefore, the size of these Temp
Caches generated during this period cannot be too large
(DNS cache’s average cache miss rate can be lower than
10% [3]), so the merging procedure proc2 can also be
carried out quickly within a few microseconds which can do
little negative impact on the local DNS name server’s
performance.

As the key component of local DNS name server, DNS
cache’s performance is critical to the local DNS name
server’s service. During our DNS cache backup procedure,
only some Temp Caches and updating lists are needed,
which could do little negative impact on the DNS cache’s
overall performance. As of this paper is completed, the
redesigned DNS cache structure has been applied to the
BIND10 project [7] and the DNS backup mechanism
introduced here will also be deployed in the near future even
though it is only some initial thoughts so far. Obviously,
these ideas still need to be tested through long-term practice
to get further improvements.

ACKNOWLEDGMENT

We are grateful to Cindy Wang and Shane Kerr in Internet
Systems Consortium (ISC) for several useful advices
especially in optimizing the redesign of DNS cache
architecture.

REFERENCES
[1] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034,

Nov. 1987.
[2] P. Mockapetris, “Domain names - implementation and specification,”

RFC 1035, Nov. 1987.
[3] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and

the effectiveness of caching,” IEEE/ACM Transactions on Networking,
10(5), 589—603, 2002.

[4] J. Jung, A.W. Berger, and H. Balakrishnan, “Modeling TTL-based
Internet caches,” Proc. IEEE INFOCOM '03, Apr. 2003.

[5] X. B. Yuchi, X. Wang, X. D. Lee, and B. P. Yan, “A new statistical
approach to DNS traffic anomaly detection.” In Proc. 6th International
Conference on Advanced Data Mining and Applications (ADMA2010),
LNCS, vol. 6441, pp. 302-313, Springer, Heidelberg, 2010.

[6] R. Elz, R. Bush, “Clarifications to the DNS specification”, RFC 2181,
Jul. 1997.

[7] ISC BIND 10 project, http://www.isc.org/bind10/project/.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1441

