
Location based services for mobile users: a scenario based implementation account

Alberto Faro
 Dept. of Electrical, electronics and Computer

Engineering University of Catania
Catania, Italy

afaro@dieei.unict.it

Concetto Spampinato
Dept. of Electrical, electronics and Computer

Engineering
University of Catania

Catania, Italy
cspampin@dieei.unict.it

Abstract - Many Location Based Services (LBSs) have been
proposed, but they are developed mainly with a proprietary
approach, i.e., they are specialized for managing specific tasks
and are not able to make available the collected information to
the services offered by other providers, thus limiting the
potential benefits for the users. For this reason LBSs should be
extended with a semantic layer able to provide the mobile users
with the real time and off line information coming from the
multitude of databases relevant for LBS activities, hopefully by
using the same mobile device. Aim of the paper is to show how
this can be accomplished in practice by integrating three
methodologies in a single web architecture: a) a scenario based
design methodology to implement the use stories of the mobile
users, b) a semantic data management methodology to allow
data integration, and c) a suitable JQuery Mobile based
interface to allow the RoR web server to inform people on the
available services independently on the adopted mobile.

Keywords-component; Mobile Networked Applications;
Intelligent Transport System; Scenario-based Design, Web-
based Services;

I. INTRODUCTION

This Location based services (LBSs) are more and more
relevant due to the pervasive diffusion of mobiles that allow
metropolitan information centers to inform the citizens just
in time on important events dealing with traffic, security and
logistics. Although many LBSs have been proposed, they are
mainly developed with a proprietary approach, i.e., they are
specialized for managing specific tasks and are not able to
make available the collected information to the services
offered by other providers, thus limiting the potential
benefits for the users and their own business opportunities.

This motivates why it has been proposed to extend the
LBSs with a semantic layer able to provide the mobile users
with the real time and off line information coming from the
multitude of databases relevant for mobile activities,
hopefully by using the same mobile device [1].

Aim of the paper is to show how this can be
accomplished in practice by integrating three methodologies
in a single web architecture, i.e. Ruby on Rails (RoR) [2], :

a) a scenario based design methodology to support a
correct implementation of the use stories enacted by the
mobile users;

b) a data management methodology to access the
semantic layer where the information resident on the

disparate databases relevant for LBSs stories is represented
by a standard OWL format, and

c) suitable programming methods, e.g., HTML powered
by Ruby, JQuery Mobile and Javascript, that allows the web
server to interact in real time with the user mobiles, e.g.,
Iphone or Android, taking into account the user position.

In particular, when discussing the first issue we illustrate
how two IS design methods, i.e. the story telling theory (STT)
[3], [4] and the Behavior Driven Design (BDD) [5], may be
integrated to implement safe and live web services using
RoR. How RoR can be powered by means of the two main
semantic ways to access the original data (i.e., centralized
ActiveRDF-like API [6] vs distributed SPARQL [7]) is
outlined depending on security and privacy issues. Finally,
when illustrating the interfacing alternatives between the web
server and the mobiles, some concrete solutions are sketched
for possible reuse in similar contexts.

II. THE USE STORY BASED DESIGN TO IMPLEMENT

EFFECTIVE ROR BASED WEB SERVICES FOR MOBILE USERS

Designing the information systems on the basis of the use
stories is a key point to build user centered systems. This
way of proceeding differs from the object centered approach
mainly devoted to optimize the software architecture from
the constructivist point of view.

In the nineties, SBD was mainly intended as a particular
application of the Case based Reasoning (CBR) [8] to the
information systems design. In the last decade, specific story
based paradigms have been proposed more tailored to IS
design, e.g. the story telling theory (STT) and the Behavior
Driven Design (BDD).

In the following we outline how they work and can be
used in a complementary fashion to verify the whole design
of an user centered IS. Indeed STT powered by the CCS
calculus [9] is suitable to verify that the specifications are
safe and live, whereas BDD has been conceived mainly to
test the software implementations against the specifications
[10].

Both STT and BDD consist of a set of templates that
should be used to specify the user behavior. According to
STT a design should be partitioned in use stories that on their
turn are subdivided in episodes. Each use episode consists of
a temporal ordering of actions. The main feature of an
episode is its atomicity, that implies that if an episode does
not terminate successfully all the actions are cancelled and

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1448

the system goes back to the state of the system before
starting the episode.

The use episode represents the behavior of an actor, but
to reach the episode goal, the main actor should interact with
others. This is why in STT, we have introduced the notion of
scene consisting of the parallel composition of all the use
episodes concurring to reach the goal of the main actor. In
SST such concepts are summarized by means of an episode
template consisting of the following main categories: what,
i.e., the goal of the episode, assumptions, i.e. the conditions
(or the state) that enable the starting of the episode, who, i.e.,
the actors involved in the episode, generally they are the
main character and one or two cooperating actors, how, i.e.,
the ordering in time of the actions too be executed by the
actors to reach the goal, what can go wrong, i.e., the list of
dangerous events that we intend to manage to avoid to restart
the episode from scratch, exception handling, i.e., the
ordering in time of the actions to recover the story.

The action flow is expressed in the section How by a sort
of structured English. But, it should be expressed also by
using CCS formulas, where the actions are denoted by ag!
and ag? ; actions deal with a potential output or input
exchanged by the actor A, through a communication gate g,
with another actor. Operators ; and + indicate respectively
the sequence or the choice between two actions, whereas the
parallelism between two actions is indicated by vertical bar |.
The execution of an action, e.g., ag!, is given by the
contemporaneous execution of the complementary action ag?
by another actor. The parallel composition ag! | ag? gives
rise to an internal action i that is not visible from the outside.
As an example, a scene S consisting of two concurrent
episodes EA and EB may be expressed as follows:

 S = EA | EB

EA: s1A ; d1? ; ag! ; bg? ; goal! ; s2A EB: s1B; ag? ; bg! ; s1B

where s1A and s1B are the conditions that allow the actors to
start the execution of the episode. By using the CCS
calculus we would obtain that:

S = (s1A , s1B); d1? ; i ; i; goal! ; (s2A , s1B)

i.e., when actor A is in state s1A s/he is willing to execute the
request d1?, generated by the same actor A, of a certain
service offered by another process B. The resulting parallel
composition indicates that the cooperating episodes enacted
by A and B, gives rise to a scene that it is not only safe,
being not deadlocked, but also live since actor A reaches
the goal with the support of actor B.

STT assures that the proof of correctness can be done
even in case of very complex scenes consisting of several
cooperating actors. This issue is outside the scope of the
paper, but the interested reader may consult the Theory of
Scenes and Interactions [11]. Of course, subdividing the
specifications in stories allows the designer to verify the
project not as a whole but story by story (or episode by
episode), i.e., by a less costly verification approach.

It is very easy to pass from STT to BDD. Indeed, a BDD
specification consists of a set of use scenario templates
expressed by three main categories:

• given, i.e., conditions to allow the user to start the use case
• when, i.e., the first action of the use case
• then, i.e., the final action of the use case

As a consequence, it is straightforward to put into
correspondence STT and BBD as follows:

assumptions <---> given and how <---> when; then.

Let us note now that, in general, the section when should

deal with the first action of the episode and then with the
final one, but one could adopt a finer description where
when; then refer to a shorter sequence of actions. This
correspondence allows us to rewrite the STT specs in BDD
to prove that an implementation meets the specification
behavior by behavior. In this way we have the possibility of
proving what the engineers really need, i.e., that their
software implementations satisfy the system specifications
and that, on their turn, the implementations satisfy correctly
the requirements agreed with the contractors.

However, these effective engineering tools would remain
useless in absence of a programming environment oriented to
implement a web service by stories. Fortunately, this
weakness has been removed by using languages that follow
the Model-Controller-View (MVC) programming paradigm,
such as Ruby on Rails (RoR), i.e., a story based web
programming environment based on Models to manage the
data stored in tables as they would be objects, Controllers to
implement story by story the interactions with the users, and
Views to interact with the users with interfaces suitable for
supporting the specific use stories.

Although many authors have deepened the Models
section of MVC, the distinctive features of the MVC
paradigm are the Controller and View sections. Indeed, as
pointed out in the mentioned book on Rails [2], RoR aims at
making feasible the user centered design through a stepwise
refinement of an initial prototype derived from simple
sketches of the user-system interactions. This "extreme"
position is instrumental for stressing the importance of the
user perspective in modern IS design and claims that
complicated mathematical tools should be avoided. In
principle, we agree with both these issues, but, as this section
has demonstrated, STT/BDD is both formal and simple
enough to prove that the software code has passed both the
verification and testing phases.

Fig.1 demonstrates why designing by informal sketches
may have many shortcomings. In particular, the sketch in the
background is proposed in the mentioned RoR book to
specify the user operations to purchase on line some books
from a web store, whereas the geometrical lines aim at
pointing out that the overall story should develop by the
sequence of three episodes, i.e. choose the books, fulfill the
order, and collect the receipt.

This clarifies that the story can stop at the end of each
episode and may resume from where it has been left off,

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1449

without restarting from scratch. Also, the superimposed
diagram points out the processes involved and the tables
required to support the document exchange.

Figure 1. Specifications of a web store by sketches in the background, and

corresponding STT diagrams in the foreground.

III. MAKING THE SEMANTIC LAYER PRODUCTIVE FOR THE

MOBILE USERS

Although the Models section has not been conceived as
the main feature of RoR, it is certainly a powerful
environment to facilitate the object oriented management of
the disparate databases of interest of LBSs usually expressed
by tables, i.e., it hides the implementation issues of each
database through objects, called ActiveRecords, that binds
the tables to classes. This makes possible the data
management by simple object formulas. To this aim, the
records of the tables are extracted and recollected as objects.
For example by the formula @parks = Park.all all the records
of the table Park are made available to the programmer as
objects @parks that can be programmed according to the
object oriented language Ruby. For example, the field
"name" of the Park table can be used as @parks.name.

Objects can be used either in the Controllers or in the
Views. For example the following code refers to the View of
the RoR Controller related to the story of informing the user
on the best route to destination. In particular, all the
destinations have been recollected by the object @posts in
the Controller, and used within the for-end loop of the related
View shown in fig.2 to produce the listing of the destinations
from which the mobile user should select the preferred one.
Ruby instructions are embedded in HTML code between two
special symbols, i.e., <% and %>. The interested reader
may find in [2] further details on how RoR may be
programmed by using Ruby and Java script.

Although the RoR data management is stable enough,
today the data management cannot be performed effectively
by only the relational or object approach due to the relevant
results obtained by the ontology engineering to integrate
disparate databases available on the web. In the ontology
approach, data are represented by a vocabulary of terms
interrelated between them by subject-predicate-object
relations, also known as RDFS-OWL [12].

Figure 2. Software code of the user view of the fig.3b

As a consequence, RoR cannot be limited to bind tables
to objects, but RDFS-OWL triples should be managed too.
Such triples may be stored on a suitable LBS central server,
or they may remain on their original sites, possibly together
with the tables from which they are continuously updated. In
the former case, we can adopt two main techniques to access
the data: a) to use an API layer able to bind the triples to
classes, e.g. ActiveRDF, so that the triples may be used as
objects by means of the mentioned RoR object oriented
formulas, or b) to process the response received from the
server to a SPARQL query sent to the LBS server from RoR
applications through the REST protocol service [2].

The former technique is suitable to access triples stored
on a central server, whereas the latter may evolve towards a
technique able to access triples resident on a distributed
storage system. In the mentioned semantic LBS framework,
both the centralized and distributed approaches should be
adopted. Indeed, in the servers devoted to manage particular
central DBs, such as account information, it is preferable to
use an API layer based on objects rather than triples.

On the contrary, in the LBS applications where the server
is devoted to inform the mobile users by taking advantage
from all the information available on all the federated DBs, a
distributed SPARQL query system should be adopted to
access the data stored on their original sites rather than
copying them on the central server. Indeed, it may be more
effective to send the SPARQL query towards all the
particular DBs and to process the responses received in
SPARQL format rather than defining some super-object that
integrates the objects obtained from the responses.

Such analysis might change substantially if one uses the
current version of RoR, i.e., 3.X instead than 2.X. In fact,
ActiveRDF and similar solutions should be are abandoned
since they bind triples to the ActiveModels classes foreseen
in RoR 2.X, whereas RoR is evolving towards a version, i.e.,
Rails 3.X, where the data layer is managed by Active
Models and Active Relations.

As a consequence, it is needed a novel API layer that
binds triples to RoR 3.X objects. Also, it is suggested to
connect the RoR 3.X application to a distributed SPARQL
service rather than using the outlined REST based query
system that addresses separately the remote triple stores, thus

<div data-role="header">
 Refresh
 <h1>Destination Points</h1>
 <%= link_to 'Add', new_post_path, "data-icon" => "plus",
"class" => "ui-btn-right" %>
 </div>
<div data-role="content">
 <ul data-role="listview">
 <% @posts.each do |post| %>

 <%= link_to post.title, post %>
 <%= link_to 'edit post', edit_post_path(post), "data-icon" =>

"gear" %>

 <% end %>

</div>

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1450

avoiding the onerous phase of managing the changing
configuration of the available DBs. Future works will
clarifies if such novel techniques will make the semantic
layer fully productive for mobile applications where real
time information resident on disparate DBs play a key role to
support the use tasks.

Concerning the main resources of an LBS ontology, e.g.,
parks, roads, intersections, pharms, we may take advantage
from the proposals available in literature e.g., [13], [14] and
[15], also called urban ontology or mobility ontology, to
choose the best terms featuring the LBS vocabulary.
Concerning the parameters affecting the individual terms
(e.g., travel time, vacancies, and so on) they should be
defined on the basis of the available sensing technologies,
e.g., [16], [17], or from the available business information.

For this reason an LBS ontology should contain terms
useful for both informing people on the available services
and receiving measurements from the sensing devices. This
allows the main LBS information center to inform mobile
users about the availability of a certain service in a certain
urban area (e.g. a parking or a pharmacy), and about the
service nearest to me depending on the user location and on
the current traffic conditions. Also, this would allow
automated agents not only to operate on behalf of their users
to conclude business transaction but also to process the
collected data to obtain the parameters that characterize the
time evolution of an LBS.

IV. GEOLOCATION INTERACTION WITH MOBILES

The third key point of an effective LBS is the one of
providing the mobile users with real time information by a
suitable graphical interface [18] that meets the user visual
attention [19]. This may be obtained by many programming
languages depending on the particular mobile. But,
avoiding the proliferation of the interface procedures is
certainly a mandatory engineering requisite that may limit
the use of many software frameworks. Hopefully, this
requisite may be fulfilled by adopting the JQueryMobile
(JQM) framework, whose software packages may be
executed on the main mobile platforms and may be
embedded into RoR 3.X applications together with the Ruby
code and the Java scripts.

An example may clarify how this aim can be achieved in
practice. The first deals with the classical request of the best
route to reach the destination. Fig.3a shows the Google Maps
obtained by a JQM procedure that detects automatically the
current user position by executing within an RoR Controller
the navigator.geolocation instruction. After measured these
coordinates, the RoR Controller asks the user to choose the
destinations from the ones listed on a specific View, e.g., the
one shown in fig.3b, given by a JQM procedure following
the lines indicated in http:// fuelyourcoding.com/getting-
started-with-jquery-mobile-rails-3/. The user may choose
either a fixed location (e.g., the Central Parking), or a
location that depends on her/his current position (e.g., Close-
By Pharmacy), or that is nearest to the destination (e.g.,
Close-By Downtown Parking). After clicking the relevant
button, the mobile user will receive the suggested route to
destination by another JQM procedure, e.g., fig.3c shows the

map computed by reusing the software available at the page
jquery-mobile-xample.html of the address http://jquery-ui-
map.googlecode.com/svn/trunk/demos/.

Figure 3. Current user position (3a), list of the destination points of user
interest (3b), and route to destination computed by the LBS server (3c).

This example points out also that the user mobility may
be improved greatly by this novel approach if the route to
destination suggested by the LBS server is computed by
using the current traffic conditions detected by a
metropolitan monitoring system. In fact, this would allow the
drivers to move towards the parking areas with vacancies
that are nearest to their current position or to the destination
depending on the traffic conditions. Also, this example
shows that an RoR based LBS server powered by JQM
procedures would allow the mobile users to carry out more
powerful actions such as to buy products or to reserve a
service on the fly.

This opportunity is further increased if the RoR LBS
server makes use of the information available on all the
metropolitan databases by using the RDFS-OWL approach
outlined in the previous section. Fig.4 shows how joining,
by a SPARQL query, the triples (or metadata) resident on
two DBs, i.e., the ones related to the Garden Parks and to the
Concerts, we may offer to the user a richer information on
the metropolitan events on her/his mobile.

(a) (b)

(c)

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1451

Figure 4. The use of metadata facilitates the integration of different DBs
and provides the users with more intelligible information.

IV. CONCLUDING REMARKS

The paper has illustrated how RoR 3.X may be powered
by using RDFS-OWL technologies and JQM procedures to
offer real time semantic services to the mobile users. In
particular semantics allows the integration of the data
resident on the disparate DBs available at metropolitan scale.

Also, semantics favors integration of the traffic
measurements collected by the sensing system and makes
more intelligible to the users the information provided on
their mobiles. RoR makes also feasible to design applications
according to the user centered design. This makes more clear
for the user the procedures to follow to reach their goals. In
particular, we have shown that such approach favors the
modularity of the design and the traceability of the possible
software bugs, thus confining the maintenance or revision
procedures within specific portions of the specifications and
the related codes.

Further works should be devoted to optimize the
integration of resources resident on different DBs by using
distributed technologies such as distributed SPARQL tools
or distributed versions of the ActiveRDF-like approaches for
supporting RoR 3.X distributed applications. Also, how
integrating JQM procedures in RoR should be better
understood to further improve the user-machine interface.
Design memories consisting of software patterns [20] may
help designers in repurposing the software, e.g., [21] and
[22], thus reducing the development time [23]. Experimental
results on the performance of a prototype under development
in a project named K-Metropolis, partially supported by the
Sicily Regional Government, will be available this year.

REFERENCES
[1] A. Faro, D. Giordano, C. Spampinato, Integrating location tracking,

traffic monitoring and semantics in a layered ITS architecture, IET
Intelligenrt Transportation Systems, Vol.5, Issue 3, pp 197-206, 2011.

[2] M. Hartl, Ruby on Rails 3, Addison Wesley, 2011.

[3] A. Faro, D. Giordano, StoryNet : an Evolving Network of Cases to
Learn Information Systems Design. IEE Proceedings SOFTWARE,
pp.119-127, 1998.

[4] A. Faro, D. Giordano, Concept Formation from Design Cases: Why
Reusing Experience and Why Not. Knowledge Based Systems
Journal, vol. 11, n.7/8, p.437-448 ,1998.

[5] D. North, Introducing BDD, http://dannorth.net/introducing-bdd/

[6] E. Orel, R. Delbru, ActiveRDF: Object Oriented Semantic Web Pro-
gramming, Proc. f the16th Int. Conf. on WWW. ACM, 2007.

[7] B. Quilits, U. Leser, Querying distributed RDF data sources with
SPARQL, Proceedings of the 5th European semantic web conference
on The semantic web, ESWC'08, 2008.

[8] S.L. Mansar, F. Marir, H.A. Reijers, Case-Based Reasoning as a
Technique for Knowledge Management in Business Process Redesign,
Electronic Journal on Knowledge Management, Volume 1 Issue 2,
2003 113-124 Academic Conferences Limited 2003

[9] R. Milner, A Calculus of Communicating Systems, Springer, 1980

[10] D. Chelimsky, et al., The RSpec Book, O'Reilly Vlg. Gmbh & Co.

[11] A. Faro, D. Giordano, A theory of interactions and scenes for user
centered systems specification and verification, Proc. of the Asia
Pacific Software Engineering Conference , APSEC '97. 1997.

[12] D. Allemang, J. Hendler, Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL, Elsevier Ltd, Oxford, 2011

[13] J. Teller, Ontologies for an Improved Communication in Urban
Development Projects, Studies in Comp. Intelligence , 61, 1–14 2007.

[14] A. Faro, D. Giordano, A. Musarra, A. Ontology based intelligent
mobility systems. IEEE SMC’03 Proc. Int. Conf. on Systems, Man
and Cybernetics, Washington, 2003, Vol.5, 4334-4339. IEEE , 2003.

[15] Vilches Blázquez L.M, et alii, Towntology & hydrOntology:
Relationship between Urban and Hydrographic Features in the
Geographic Information Domain, Studies in Computational
Intelligence, 2007, Volume 61, pp 73-84, 2007.

[16] A. Faro, D. Giordano, C. Spampinato, Evaluation of the traffic
parameters in a metropolitan area by fusing visual perceptions and
CNN processing of webcam based images. IEEE Transactions on
Neural Networks, vol.19, issue 6, pp 1108-1129, 2008.

[17] A. Crisafi, D. Giordano, C. Spampinato., GRIPLAB 1.0: Grid Image
Processing Laboratory for Distributed Machine Vision Applications.
Proc. Int. Worshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE '08. IEEE, 2008.

[18] Giordano, D. Evolution of interactive graphical representations into a
design language: a distributed cognition account, International
Journal of Human-Computer Studies Vol. 57, Issue 4, pp 317-345,
2002.

[19] A. Faro, D. Giordano, C. Pino, C. Spampinato, Visual attention for
implicit relevance feedback in a content based image retrieval, Eye
Tracking Research and Applications Symposium (ETRA), 73-76,
2010.

[20] A. Faro, D. Giordano, Design memories as evolutionary systems:
socio-technical architecture and genetics, IEEE Proc on Systems Man
and Cybernetics, pp 4334 - 4339, 2003.

[21] C. Bizer, et al., Linked Data: Principles and State of the Art, 17th
International World Wide Web Conference W3C Track @
WWW2008, Beijing, China 23-24 April, 2008.

[22] S. Dietze, H.Q.. Yu, D. Giordano, E. Kaldoudi, N. Dovrolis, D. Taibi,

Linked education: Interlinking educational resources and the Web of
data. Proceedings of the ACM Symposium on Applied Computing,
SAC, 366-371, Trento, 2012.

[23] S. Ahmed, Encouraging reuse of design knowledge: a method to
index knowledge, Design Studies, Volume 26, Issue 6, pp 565-592,
2007.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1452

