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Abstract—For multi-objective particle swarm optimization, the 
selection of the global best becomes an interesting topic, 
because it balances convergence and diversity. But the global 
best selected by the existing strategies has a high probability of 
not dominating the particle. The flight towards the global best 
not dominating the particle is expected to cause some 
objectives to become worse, thus does not surely promote 
convergence. As the accumulation of the flights, the algorithm 
suffers from slow convergence. Therefore we propose the 
dominating strategy to accelerate the convergence by 
decreasing that probability. Experimental results show our 
strategy outperforms other strategies. 
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I.  INTRODUCTION 

Particle swarm optimization (PSO) [1] is a relatively 
recent heuristic inspired by the choreography of a bird flock, 
a kind of swarm intelligence [2] developed in research on 
artificial life [3]. For its simple concept, easy implementation 
and fast convergence, it is now widely used to solve multi-
objective optimization problems (MOPs). 

For multi-objective particle swarm optimization 
(MOPSO), the selection of the global best becomes an 
interesting topic, because it balances convergence and 
diversity. Convergence requires solutions close to the Pareto 
front, whereas diversity requires uniform solutions along the 
Pareto front. Though great varieties of global best selection 
strategies have been proposed, the selected global best still 
has a high probability of not dominating the particle. The 
flight towards the global best not dominating the particle is 
expected to cause some objectives to become worse, thus 
does not surely promote convergence. As the accumulation 
of the flights, the algorithm suffers from slow convergence. 
Therefore we propose the dominating strategy to accelerate 
the convergence by decreasing that probability. We adopt the 
classical MOPSO – Coello’s MOPSO [4] as the basic 
algorithm, and apply different global best selection strategies. 
Comparison on the WFG series [5] shows that our strategy 
provides the best performance. 

The reminder of this paper is organized as follows. 
Section II defines basic concepts. Section III briefly reviews 
related work. Section IV elaborates the dominating global 
best selection. Section V presents experimental results. 
Section VI draws conclusions and discusses future research 
directions. 

II. BASIC CONCEPTS 

Definition 1 Multi-objective Optimization Problem 
A MOP attempts to find the decision vector x  in the 

domain Ω  that will optimize the objective vector ( )f x . 
Without loss of generality, it can be described as minimizing 
the value for every objective. 
 1 2min ( ) ( ( ), ( ),..., ( )),kf f f= ∈ Ωf x x x x x  (1) 

A decision vector x  consists of n  decision variables. An 
objective vector ( )f x  consists of k  objectives. The objective 
function f  maps the decision space into the objective space. 

Definition 2 Pareto Dominance 

 {1, 2,..., }, ( ) ( ), ,
( ) ( ) ( ) ( )
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x y f x f y  (2) 

Given two decision vectors x  and y , x  dominates y , 

or y  is dominated by x , iff ( )f x  is not larger than ( )f y  for 
any objective and is less for at least one objective; x  is 
equivalent to y , iff ( )f x  and ( )f y  are identical in all the 
objectives; x  and y  are incomparable, iff they are not 
equivalent, and neither dominates the other. 

Definition 3 Pareto Optimal Set 
 * { | , ( ) ( )}ρ = ∈ Ω ¬∃ ∈ Ωx y f y f x  (3) 

A decision vector x  is Pareto optimal, iff it is not 
dominated by any decision vector in the decision space. The 
Pareto optimal set is the set of all the Pareto optimal decision 
vectors. 

Definition 4 Pareto Front 
 * *{ ( ) | }fρ ρ= ∈f x x  (4) 

The Pareto front is the image set of the Pareto optimal set 
in the objective space. 

III. RELATED WORK 

As the only information sharing mechanism proposed by 
PSO, the selection of the global best is vital to the 
performance of MOPSO. If the particles are separated into 
several swarms [6, 7], the global best is selected inside the 
swarm the particle residing in. If the particles are not fully 
connected [8-10], the global best is selected among the 
particle’s neighbors. In this paper, we exclude these 
situations, and only discuss how to choose a global best for a 
particle when given a swarm of particles that are fully 
connected. 
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Common used strategies are summarized and analyzed as 
the following. The random strategy randomly chooses an 
archive member, but the sustained change of the global best 
which can also be far from the particle may cause erratic 
oscillations and lead to the chaotic search behavior. The 
sigma strategy [11] selects the archive member with the most 
similar sigma value, but the computational cost greatly 
increased when handling problems with high objective 
dimensions. The nearest strategy chooses the archive 
member that is the nearest to the particle in the objective 
space, but the particle has a great chance to select the same 
global best for many iterations, thus may fall into local 
optima. The grid strategy [4] uses the roulette wheel to select 
the hypercube with more archive members and then 
randomly choose one member from the hypercube, but needs 
the maintenance of the adaptive grid. The dominated tree 
strategy [12] constructs composite points to reorganize the 
archive to reduce the computational cost, thus allows a larger 
archive. But it does not suit the common used asynchrony 
model in which the archive is updated after each update of 
the particles, because it needs to frozen the archive to 
generate composite points. The stripe strategy [13] assumes 
the shape of the Pareto front for a bi-objective problem is 
similar to a line connecting two extreme solutions, so the 
nearest stripe center is chosen, but it can only deal with bi-
objective problems, does not suit the asynchrony model, and 
the performance greatly deteriorates when the hypothesis is 
wrong. 

Other strategies are also summarized. The average 
strategy [14] uses the average of the complete set of the 
global bests on each objective, but such formed global best 
may not be good and the same global best for all the particles 
apparently violates the demand for diversity. The uniform 
strategy [15] assigns each particle a serial number, sorts the 
archive and assigns each archive member a serial number, 
and then uniform distributes each particle by its order to an 
archive member, in order to promote uniformity, but does 
not suit the asynchrony model. The comprehensive learning 
strategy [16] selects different global bests for different 
decisional dimensions of a particle, and each global best may 
be a random archive member, its personal best, or the 
combination of the personal bests of some other particles. 
The artificial strategy [17] fractionally creates an artificial 
global best by collecting the best components. The two-
lbests strategy [18] selects the archive member close to the 
personal best which is also an archive member to prevent the 
chaotic search behavior. The binary tournament selection [19] 
uses a binary tournament based on the crowding value of the 
non-dominated archive members to choose the global best. 
The crowding strategy [20] selects the one having the 
smaller crowding distance to its nearest neighbor in the 
archive between two random archive members. 

Now we have analyzed the existing strategies, but little 
attention has been paid to the issue that the high probability 
of the selected global best not dominating the particle 
decreases the convergence, and that is what we concern. 

IV. DOMINATING GLOBAL BEST SELECTION 

Given a particle, a global best provides mixed 
information of convergence and diversity. Convergence 
guides the particle towards the Pareto front, whereas 
diversity guides the particle along the Pareto front. Only 
when the global best dominates the particle, the flight 
towards such a global best has the expectation of becoming 
not worse on all the objectives and better on some objectives, 
thus convergence is surely expected. 

Our proposed dominating strategy chooses the archive 
member dominating the particle if possible. Therefore given 
a particle, the selection is as follows. We randomly select an 
archive member and record it as the start member, and then 
begin to traverse the archive members. If an archive member 
dominating the particle is found, we terminate the traverse 
and select it as the particle’s global best. If we do not find 
any qualified member during a traverse, we simply select the 
start member. 

Three reasons support the efficiency of the strategy. 
Firstly, if archive members dominating the particle exist, 
only such members can be selected, thus convergence is 
promoted. Secondly, such members are selected randomly, 
so the global best for the particle always changes, thus the 
randomness prevents premature convergence. Thirdly, if no 
such member exists, the archive member is selected 
randomly, thus diversity is also promoted. 

TABLE I.  COMPARISON BETWEEN STRATEGIES OF GLOBAL BEST 
SELECTION 

Name Time Complexity Optimality Determinism Asynchrony
Dominating ( )O kAN  Good Weak Yes 

Grid ( )O N * Middle Weak Yes 

Random ( )O N  Middle Weak Yes 

Sigma ( )( 1) 2O k k AN− Middle Middle Yes 

Nearest ( )O kAN  Middle Strong Yes 

Dominated 
Tree 

2( )O A AN+  Middle Middle No 

Stripe ( ), 2O N k =  Bad Strong No 

We compare the dominating strategy with other common 
strategies in Table I. Time complexity describes the 
computation cost of the strategy. k  is the objective 
dimension; A  is the archive size; N  is the particle number. 
“*” means the grid strategy needs to maintain the grid, and 
such time complexity is not included. Though the time 
complexity of the dominating strategy is not the smallest, 
such cost is acceptable, especially when handling problems 
with expensive evaluations. Optimality depicts the optimality 
of the global best provided by the strategy. The better it is, 
the faster the convergence. The global best from the archive 
that dominates the particle is good; the global best from the 
archive is middle; the global best even not selected from the 
archive is bad because it is usually dominated. Determinism 
indicates the probability of changing the global best in the 
following iterations. The weaker it is, the lower the risk of 
premature convergence. Random based strategies that always 
change the global best provide weak determinism, such as 
the dominating strategy, the grid strategy, and the random 
strategy; position based strategies that sometimes change the 
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global best provide middle determinism, such as the sigma 
strategy and the dominated tree strategy; position based 
strategies that seldom change the global best provide strong 
determinism, such as the nearest strategy and the stripe 
strategy. Asynchrony demonstrates whether the strategy suits 
the asynchrony model, thus the dominated tree strategy and 
the stripe strategy are not recommended. To conclude, the 
dominating strategy obviously performs the best, because it 
suits the asynchrony model, and provides both good 
optimality and weak determinism with acceptable time 
complexity. 

V. TEST FUNCTIONS AND PERFORMANCE ANALYSIS 

We select all the WFG [5] test functions because this 
series provides the most abundant characteristics such as 
non-separable, deception, and degeneration [21]. The series 
uses 24, 3n k= = , with 4 position variables and 20 distance 
variables. 

We propose the dominating ratio to measure the 
probability of the global best dominating the particle, which 
reflects the optimality of the strategy. We also adopt the 
hyper-volume [22, 23] metric to measure both convergence 
and diversity and provide an overall measure of the result. It 
is defined as the volume dominated by the archive members, 
but not dominated by the reference point – [10,10,10]. The 
larger the value, the better the performance is. We use box 
and whisker plots for visualization of the statistics of these 
metrics. 

We use Coello’s MOPSO [4] as the basic algorithm, and 
generate derived algorithms by applying the dominating 
strategy and some common global best selection strategies 
that suit the asynchrony model. The parameters are set as 
follows. The population size is 100; the maximum number of 
iterations is 250, i.e., 25000 evaluations are processed; the 
mutation rate is 0.5; the archive size is 300; the adaptive grid 
uses 10 divisions for each objective. Every algorithm runs 30 
independent times on every test function. 

Comparison of the obtained results is shown in Fig. 1. 
The label ‘A’ represents the dominating strategy; the label 
‘B’ represents the grid strategy; the label ‘C’ represents the 
random strategy; the label ‘D’ represents the sigma strategy; 
the label ‘E’ represents the nearest strategy. For dominating 
ratio, the dominating strategy always performs the best, the 
nearest strategy the second, the sigma strategy the third, and 
the grid strategy and the random strategy the last, the same 
with the optimality sequence. For hyper-volume, the 
dominating strategy always performs the best, and only for 
WFG9, the difference is slight. Other strategies perform 
differently on different functions. Therefore the dominating 
strategy outperforms other strategies, no matter the function 
is separable or not, multi-modal or not, deceptive or not, and 
non-uniform or not. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have analyzed existing strategies related 
to the global best selection, found that the high probability of 
the global best not dominating the particle decreases the 
convergence, and suggested the dominating strategy that 

randomly selects an archive member dominating the particle 
if possible. Our strategy provides both good optimality and 
weak determinism. Experimental results demonstrate that our 
strategy outperforms other strategies. 

As proposed future work, the current dominating strategy 
can be seen as mixed with the random strategy, so the future 
dominating strategy can be mixed with the grid strategy to 
increase the uniformity of the obtained solutions. 
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Figure 1.  Comparison of the obtained results. 
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