

Research on the Parallelization of LLL Algorithm

Liu Xianghui1, 2, Wang Zheng1, 2, Quan Jianxiao2
1Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute,

Zhengzhou 450002, China
2State Key Laboratory of Mathematical Engineering and Advanced Computing,

Zhengzhou 450002, China
e-mail: lxhkz2002@163.com

Abstract—Lattice basis reduction algorithms are important
tools in the area of cryptanalysis. LLL algorithm is one the
most famous algorithms and the parallelization of LLL
algorithm has been received increasing attentions. In this
paper, the traditional block-based LLL algorithm is
implemented in a parallel system and the efficiency is analyzed.
With the analysis result, we indicate the bottleneck of the
traditional block-based algorithm and give a new parallel
implementation scheme of block-based LLL algorithm. The
experimental results show that the new scheme behaves much
better comparing to the old one.

Keywords-lattice basis reduction; LLL algorithm; parallel
implementation; block-based

I. INTRODUCTION

Lattice basis reduction, the problem of finding a basis of
a lattice with “short” vectors, is an important problem in the
geometry of numbers, which is applied widely used in the
area of combinatorial optimization, computer algebra and
algorithmic number theory. Also, lattice basis reduction
algorithms were once of interest primarily to number
theorists studying quadratic forms. However, since the 1980s
when the LLL algorithm was invented [1], lattice basis
reduction has been showing the tremendous power to
cryptanalysis and becoming a new research hotspot in the
field of cryptology. Firstly, the public key cryptosystem
based on knapsack problem was cracked successfully by
LLL algorithm in polynomial time [2]. Subsequently, LLL
algorithm was widely used to attack RSA schemes under
various additional assumptions, such as small exponent
attack, partial key exposure attack and factoring the modulus
when a certain portion of the bits of p are known in advance
[3][4][5]. At the same time, LLL algorithm was also applied
to factor large composite integers [6]. In a word, LLL
algorithm has been playing an important role for the
cryptanalysis.

LLL algorithm is first polynomial time algorithm for
finding a basis of a lattice with “short” vector. Therefore,
after its publication, LLL algorithm was immediately
recognized as one of the most important lattice reduction
algorithm and algorithmic achievements of the twentieth
century because of its broad applicability and apparent
simplicity. For a n-dimensional lattice, LLL algorithm can
find a non-zero short vector in polynomial time and the
length of the vector is at most (-1) / 22 n

 times longer than the

shortest vector. Nevertheless, the run time for sequential
LLL algorithm for large dimension or with big entries is still
quite high. For example, in order to factor integers that are
500 bits long the dimension of the lattice should be about
6300 and the entries contain integers that are 1500 bits long,
which cannot be acceptable for LLL algorithm [7]. Thus,
there is great interest in parallelizing LLL algorithm as to
achieve an additional improvement in reducing the run times
Backes introduced a new parallel variant of LLL algorithm
suitable for multithread environment [8]. Experiments
showed (compared to the non-parallel algorithm) a speedup
factor of about 1.75 for the 2-thread and close to factor 3 for
the 4-thread version. At the same time, Backes proposed
some modified parallel versions on the subsections of LLL
algorithm, such as GSO, size-reduction and so on. However,
the algorithms of Backes were proposed in multithread
environment requiring to sharing memory, which leads to the
parallel expansibility being limited. In fact, as early as in
1998, Wetzel was used to propose the idea of block-based
LLL algorithm [9], but he did not implement it on a parallel
computer or for a distributed system.

In this paper, we study the parallelization scheme of
block-based LLL algorithm and indicate the bottleneck of the
traditional algorithm. Based on the analysis, we also propose
a new parallel scheme for the block-based LLL algorithm.
The paper is organized as follows. In section 2, we give a
brief introduction to the theory of LLL algorithm. In section
3, we analyze the traditional algorithm and present a new
parallel scheme. Section 4 we give the experimental results
and section 5 is conclusions.

II. FUNDAMENTAL KNOWLEDGE OF LLL ALGORITHM

In this section, we give some fundamental knowledge of
lattice basis reduction, LLL algorithm briefly. For further
details we refer to [1][10].

Definition 1. Let 1 2, , , n
mb b b R∈ be linearly

independent vectors where nR is n-dimensional vector space
on real number field. Then

1 2
1

(, , ,) { | }
m

m i i i
i

L b b b z b Zλ λ
=

= = ∈ is a lattice and

1 2(, , ,)mb b b is a basis of the lattice. We call m the

dimension of the lattice. If m = n, the lattice is full-rank. If all
the vectors of the lattice are in the integral ring Z, namely
R Z= , the lattice is called integral lattice.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1572

For a n-dimensional vector 1 2(, , ,)nb b b b=  , we

denote 2 2 2 1/ 2
1 2|| || ()nb b b b= + + + by its Euclidean norm.

Shortest vector problem (SVP) is to find a shortest
nonzero vector given a lattice. It is has been shown that SVP
is NP-hard under randomized reductions and there is no
polynomial time algorithm for high dimensional lattices.
Lattice basis reduction algorithms are the basic tools for
solving SVP and LLL algorithm is the most important one of
them. We describe the LLL algorithm as follows.

Definition 2. For a lattice L with a basis

1 2, , , n
nb b b R∈ , * * *

1 2, , , nb b b is the corresponding Gram-

Schmidt orthogonalization basis and ijμ is the

orthogonalization coefficients. We call the basis 1 2, , , nb b b
a LLL reduced with parameter δ if the following conditions
are satisfied:

(1)
1

| | ,1
2ij j i nμ ≤ ≤ < ≤ ;

(2)
1 , 1 1

* 2 * 2 2 * 2 1
|| || || || || || , 2, , 1

4k k k k k
b b b k nδ μ δ

− − −
≤ + = < ≤ .

Algorithm 1. LLL algorithm
Input: Lattice basis 1 2, , , n

nb b b Z∈ and reduced

parameter δ (
1

1
4

δ< ≤)

Output: a LLL reduced with parameter δ
(1) compute the Gram-Schmidt orthogonalization;
(2) 2k = ;
(3) while(k n≤) do
(4) for(1; 1;j k j j= − ≥ − −) do

(5) if(,

1
| |

2k jμ >) then

(6) ,k k k j jb b bμ = −   ， , , ,k j k j k jμ μ μ = −   ;

(7) fi
(8) od
(9) if(* 2 * 2 2 * 2

1 , 1 1|| || || || || ||k k k k kb b bδ μ− − −> +) then

(10) exchange kb and 1kb − , compute the Gram-Schmidt

orthogonalization, max(1, 2)k k= − ;
(11) else 1k k= + ;
(12) fi
(13) od
(14) return 1 2, , , n

nb b b Z∈ .
In algorithm 1, step (4) to step (8) is also called size-

reduction. Suppose 2 2
1max(|| || , ,|| ||)nM b b=  , then the

standard LLL algorithm needs about 5 2((log))O n M
arithmetic operations for computing a LLL reduced lattice
basis. With the fp-LLL algorithm (a fast sequential LLL
algorithm), about 500 dimensional lattices could be reduced
in the current personal computers.

III. ANALYSIS OF PARALLEL BLOCK-BASED LLL

ALGORITHM

From the description of algorithm 1, it is difficult to
implement it in parallel because of the continuous exchange
and adjustment of two adjacent vectors. So people consider
to split the basis into several blocks and parallelize them. In
this section, we described and analyzed the traditional block-
based LLL algorithm firstly, and then we proposed the new
scheme and discussed it.

A. Traditional Block-based LLL Algorithm

There are at most about 2(log)O n M swaps that are
necessary to reduce a basis. The basic thought of
parallelization is to complete as much swaps as possible at
one time and the early all-swap LLL algorithm is based on
this idea. The swaps are divided into two cases-odd and even
cases. At one time, all the odd or even stations should be
completed and it is a block-based parallel algorithm with
block-size 2 in fact. For a lattice L, suppose the block-size be
l, without loss of generality, we assume n = ml. It is to say
that the basis 1 2, , , nb b b could be divided into m vector
blocks, which of them has l vectors. The crucial idea of the
block-based LLL algorithm is to calculate every block at one
time and then combine them. Next we describe the block-
based LLL algorithm with block-size l and blocks m.

Algorithm 2. Traditional block-based LLL algorithm
Input: Lattice basis 1 2, , , n

nb b b Z∈ , reduced

parameter δ (
1

1
4

δ< ≤) and block-size l

Output: a LLL reduced with parameter δ
(1) compute the Gram-Schmidt orthogonalization;
(2) split the basis into m blocks of size l;
(3) repeat
(4) for(1; ;k k m k= ≤ + +) do

(5) 1 2(, , , ,)km km km lLLL b b b δ+ + + ;
(6) od
(8) for(1; ;k k m k= ≤ + +) do

(9) compute and size-reduce of 1,kl klμ + ;

(10) if(* 2 * 2 2 * 2
1 1,|| || || || || ||kl kl kl kl klb b bδ μ+ +> +) then

(11) exchange klb and 1klb + ;

(12) compute and size-reduce ,kl iμ and , 1j klμ + ;
(13) fi
(14) for(1; ;k k m k= ≤ + +) do

(15) update and size-reduce ,i jμ ;
(16) od
(17) od
(18) until there is no swap;
(19) return 1 2, , , n

nb b b Z∈ .
In algorithm 2, step 4 to step 6 could be done in parallel

with m computing units. For the other steps, we must
implement them in sequential. So algorithm 2 could be
realized with master-slave architecture. However, it should
be noted that there are two problems restricting the parallel

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1573

efficiency. Firstly, after every block being done, the borders
of the blocks have to be checked for possible additional
swaps. Also the ,kl iμ and , 1j klμ + should be recomputed if the

swap occurs. Then the parallel efficiency will be decreased
severely. Secondly, if there is one swap, the algorithm should
be implemented again. It is to say that the load of every
computing unit is not balanced, which also leads to the
decreasing of parallel efficiency.

For the second problem, because LLL algorithm should
be judged and swapped continuously, the judges and swaps
in the borders are not avoidable. So we cannot settle it unless
we change the algorithm fundamentally. For the first
problem, the judges and swaps could be done in parallel and
the ,i jμ could be updated in the last. Then the operations in

the borders could be implemented in parallel but the update
in the last will be spent some extra operations. However,
time of the update in the last is smaller than the operations in
the borders. Based on this idea, we give a new scheme of
parallel LLL algorithm.

B. New Scheme of Parallel LLL Algorithm

From algorithm 2, the sequential implementation in the
borders limits the parallel efficiency. In fact, the ,i jμ could

be updated in the last uniformly. Then we proposed the new
scheme as follows.

Algorithm 3. New scheme of parallel LLL algorithm
Input: Lattice basis 1 2, , , n

nb b b Z∈ , reduced

parameter δ (
1

1
4

δ< ≤) and block-size l

Output: a LLL reduced with parameter δ
There are m+1 computing units and m is the blocks in

default. 1 2, , , mp p p are computing nodes, and 0p is
control node, determining algorithm whether to terminate.

(1) 0p : compute the Gram-Schmidt orthogonalization;

(2) 0p : split the basis into m blocks of size l;

(3) (1) 1(, , , _ ; (1))k l kl ksend b b swap k p k m− + ≤ ≤ ;
(4) each node computes as follows:
(5) (1)kp k m≤ ≤ :

(6) if(_ 1swap k ==) then

(7) 1 2(, , , ,)km km km lLLL b b b δ+ + + ;

(8) compute and size-reduce 1,kl klμ + ;

(10) if(* 2 * 2 2 * 2
1 1,|| || || || || ||kl kl kl kl klb b bδ μ+ +> +) then

(11) exchange klb and 1klb + ;

(12) _ 1swap k = ;
(13) fi
(14) (1) 1 0(, , , _ ;)k l klsend b b swap k p− +  ;
(15) fi
(16) end
(17) 0p :

(18) (1) 1(, , , _ ;)k l kl krecv b b swap k p− +  ;

(19) if((_) 0sum swap k ==) then end;

(20) else
(21) compute the Gram-Schmidt orthogonalization;
(22) goto step 3;
(23) fi
(24) end
(25) return 1 2, , , n

nb b b Z∈ .
In algorithm 3, the operations will be implemented in

parallel and the parallel efficiency is increased obviously.
The Gram-Schmidt orthogonalization in the last guarantees
that the ,i jμ could be computed. So the output of algorithm 3

is a LLL reduced basis. From the flow of algorithm 3, there
are some extra operations in the last. However, the more
time-consumed operations could be divided into the m
computing units and done in parallel, which will decrease the
running time.

IV. EXPERIMENTAL RESULTS

Algorithm 3 can get a LLL reduced basis and also has a
good speedup. In this section, we implemented it in Sunway
parallel processing system and offered some experimental
results.

There are 16 Intel Core2 DUO 2.4GHz CPUs with 4
cores and 96GB main memory in the Sunway system. We
use Linux with MPI compiler as the operation system and
c++ as the programming language. The data types and some
functions are based on package NTL [11]. In order to reflect
the real factor, we wrote the basic source code for LLL
algorithm but did not use the fpLLL algorithm with high
efficiency in NTL.

The experimental objects are random prime lattices.
Every element of the basis is prime generated randomly. We
generated some n = 30,40,50−dimensional lattices randomly
and the data length is about 1000 bits. Firstly, we tested the
lattices with original LLL algorithm. Then we tested them
with the traditional parallel scheme and the new parallel
scheme of LLL algorithm. The results are as in table 1.

TABLE I. THE TEST RESULTS

Dimension Block-
size

LLL
algorithm in
sequential
(second)

LLL algorithm in
parallel (second)

Traditional
scheme

New
scheme

30 5 71 130 64

30 10 71 156 70

40 5 371 662 221

40 10 371 725 247

50 5 922 1882 445

50 10 922 1731 412

From the above table, the efficiency of traditional parallel

scheme of LLL algorithm is much lower compared to the
original LLL algorithm in sequential and the speedup factors
are between 1/2 to 1. With the new scheme, the parallel LLL
algorithm has some advantage on the original one and the
speedup factor is about 2. However, the advantage of the
block-based algorithm in parallel is not obvious. The main
reason is that the load of every computing unit is not
balanced. Also the relevancy of the two adjacent vectors

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1574

decides that the swaps cannot be completely at one time.
Therefore, in order to increase the parallel efficiency of LLL
algorithm severely, we must improve the LLL algorithm in
the foundation but not just use the idea of splitting the basis
into several blocks.

At the same time, for one basis of lattice, the efficiency
will be not same if the block-size is different. For example,
the running time of block-size 5 is smaller than block-size 10
for 30-dimensional lattices. But for 50-dimensional lattices,
the result is reversed. For the different dimensional lattices,
how to choose the proper block-size to get the high parallel
efficiency is an important issue for us.

V. CONCLUSIONS

Parallelization is an important way to improve the
efficiency of algorithms, and we studied the parallel
implementation technology of LLL algorithm in this paper.
Based on the bottleneck analysis of the traditional block-
based LLL algorithm, we proposed a new parallel scheme on
the LLL algorithm. The new scheme could get a LLL
reduced basis and has a good speedup. At last, the
experimental results verified the validity of the scheme.

Although the new scheme has obvious advantage on the
traditional scheme, the parallel efficiency of block-based
LLL algorithm is not ideal, which limit the extension to high
dimension of LLL algorithm severely. Therefore, how to
improve lattice basis algorithms (not only LLL algorithm)
fundamentally and design new algorithms suitable for the
multiprocessor computer architecture becomes the research
focus of this area in the next step.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant Nos.61003291).

REFERENCES
[1] A K Lenstra, H W Lenstra, L Lovasz, “Factoring polynomials with

rational coefficients,” Mathematiche Annalen, 1982, 261(4):515-534.

[2] L M Adlman, “On breaking generalized knapsack public key
cryptosystems,” In: Pro. 15th ACM Symp. On Theory of Computing.
ACM press, 1983, 402-412.

[3] D Coppersmith, “Finding a small root of a univariate modular
equation,” In: U. Maurer. Proceedings of EUROCRYPT 1996. Berlin:
Springer-Verlag, 1996, LNCS 1070: 155-165.

[4] S Santanu. “Some results on cryptanalysis of RSA and
factorization,” PhD thesis, Indian Statistical Institute, Kolkata, 2011.

[5] R S Kumar, C Narasimam, S P Setty, “Lattice based tools in
cryptanalysis for public key cryptography,” International Journal of
Network Security & Its Applications, 2012, 4(2): 155-162.

[6] C P Schnorr, “Average time fast SVP and CVP algorithms for low
density lattices and the factorization of integers,” Technical Report,
2010, 1–18.

[7] C P Schnorr, “Factoring integers and computing discrete logarithm
via Diophantine approximation,” In: Advances in Computional
Complexity, AMS, 1993, 171-182.

[8] W Backes, S Wetzel, “A Parallel LLL using POSIX Threads,”
Technical report, Dept. of Computer Science, Stevens Institute of
Technology, 2009.

[9] Susanne Wetzel, “An efficient parallel block-reduction algorithm,”
In: ANTS-III, LNCS 1423, Berlin: Springer-Verlag, 1998, 323-337.

[10] P Q Nguyen, B Valle, “The LLL Algorithm: Survey and
Applications,” 1st edition, Berlin: Springer Publishing Company,
2009: 19-71.

[11] V Shoup, “Number theory library(NTL) for c++,”
http://www.shoup.net/ntl/, 2010.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1575

