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Abstract—Lattice basis reduction algorithms are important 
tools in the area of cryptanalysis. LLL algorithm is one the 
most famous algorithms and the parallelization of LLL 
algorithm has been received increasing attentions. In this 
paper, the traditional block-based LLL algorithm is 
implemented in a parallel system and the efficiency is analyzed. 
With the analysis result, we indicate the bottleneck of the 
traditional block-based algorithm and give a new parallel 
implementation scheme of block-based LLL algorithm. The 
experimental results show that the new scheme behaves much 
better comparing to the old one. 
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I.  INTRODUCTION  

Lattice basis reduction, the problem of finding a basis of 
a lattice with “short” vectors, is an important problem in the 
geometry of numbers, which is applied widely used in the 
area of combinatorial optimization, computer algebra and 
algorithmic number theory. Also, lattice basis reduction 
algorithms were once of interest primarily to number 
theorists studying quadratic forms. However, since the 1980s 
when the LLL algorithm was invented [1], lattice basis 
reduction has been showing the tremendous power to 
cryptanalysis and becoming a new research hotspot in the 
field of cryptology. Firstly, the public key cryptosystem 
based on knapsack problem was cracked successfully by 
LLL algorithm in polynomial time [2]. Subsequently, LLL 
algorithm was widely used to attack RSA schemes under 
various additional assumptions, such as small exponent 
attack, partial key exposure attack and factoring the modulus 
when a certain portion of the bits of p are known in advance 
[3][4][5]. At the same time, LLL algorithm was also applied 
to factor large composite integers [6]. In a word, LLL 
algorithm has been playing an important role for the 
cryptanalysis. 

LLL algorithm is first polynomial time algorithm for 
finding a basis of a lattice with “short” vector. Therefore, 
after its publication, LLL algorithm was immediately 
recognized as one of the most important lattice reduction 
algorithm and algorithmic achievements of the twentieth 
century because of its broad applicability and apparent 
simplicity. For a n-dimensional lattice, LLL algorithm can 
find a non-zero short vector in polynomial time and the 
length of the vector is at most ( -1) / 22 n

 times longer than the 

shortest vector. Nevertheless, the run time for sequential 
LLL algorithm for large dimension or with big entries is still 
quite high. For example, in order to factor integers that are 
500 bits long the dimension of the lattice should be about 
6300 and the entries contain integers that are 1500 bits long, 
which cannot be acceptable for LLL algorithm [7]. Thus, 
there is great interest in parallelizing LLL algorithm as to 
achieve an additional improvement in reducing the run times 
Backes introduced a new parallel variant of LLL algorithm 
suitable for multithread environment [8]. Experiments 
showed (compared to the non-parallel algorithm) a speedup 
factor of about 1.75 for the 2-thread and close to factor 3 for 
the 4-thread version. At the same time, Backes proposed 
some modified parallel versions on the subsections of LLL 
algorithm, such as GSO, size-reduction and so on. However, 
the algorithms of Backes were proposed in multithread 
environment requiring to sharing memory, which leads to the 
parallel expansibility being limited. In fact, as early as in 
1998, Wetzel was used to propose the idea of block-based 
LLL algorithm [9], but he did not implement it on a parallel 
computer or for a distributed system. 

In this paper, we study the parallelization scheme of 
block-based LLL algorithm and indicate the bottleneck of the 
traditional algorithm. Based on the analysis, we also propose 
a new parallel scheme for the block-based LLL algorithm. 
The paper is organized as follows. In section 2, we give a 
brief introduction to the theory of LLL algorithm. In section 
3, we analyze the traditional algorithm and present a new 
parallel scheme. Section 4 we give the experimental results 
and section 5 is conclusions. 

II. FUNDAMENTAL KNOWLEDGE OF LLL ALGORITHM  

In this section, we give some fundamental knowledge of 
lattice basis reduction, LLL algorithm briefly. For further 
details we refer to [1][10]. 

Definition 1. Let 1 2, , , n
mb b b R∈  be linearly 

independent vectors where nR  is n-dimensional vector space 
on real number field. Then 

1 2
1

( , , , ) { | }
m

m i i i
i

L b b b z b Zλ λ
=

= = ∈  is a lattice and 

1 2( , , , )mb b b  is a basis of the lattice. We call m the 

dimension of the lattice. If m = n, the lattice is full-rank. If all 
the vectors of the lattice are in the integral ring Z, namely 
R Z= , the lattice is called integral lattice. 
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For a n-dimensional vector 1 2( , , , )nb b b b=  , we 

denote 2 2 2 1/ 2
1 2|| || ( )nb b b b= + + +  by its Euclidean norm. 

Shortest vector problem (SVP) is to find a shortest 
nonzero vector given a lattice. It is has been shown that SVP 
is NP-hard under randomized reductions and there is no 
polynomial time algorithm for high dimensional lattices. 
Lattice basis reduction algorithms are the basic tools for 
solving SVP and LLL algorithm is the most important one of 
them. We describe the LLL algorithm as follows. 

Definition 2. For a lattice L with a basis 

1 2, , , n
nb b b R∈ , * * *

1 2, , , nb b b  is the corresponding Gram-

Schmidt orthogonalization basis and ijμ  is the 

orthogonalization coefficients. We call the basis 1 2, , , nb b b  
a LLL reduced with parameter δ  if the following conditions 
are satisfied: 

(1) 
1

| | ,1
2ij j i nμ ≤ ≤ < ≤ ; 

(2) 
1 , 1 1

* 2 * 2 2 * 2 1
|| || || || || || , 2, , 1

4k k k k k
b b b k nδ μ δ

− − −
≤ + = < ≤ . 

Algorithm 1. LLL algorithm 
Input: Lattice basis 1 2, , , n

nb b b Z∈  and reduced 

parameter δ (
1

1
4

δ< ≤ ) 

Output: a LLL reduced with parameter δ   
(1)  compute the Gram-Schmidt orthogonalization; 
(2)  2k = ; 
(3)  while( k n≤ ) do 
(4)     for( 1; 1;j k j j= − ≥ − − ) do 

(5)       if( ,

1
| |

2k jμ > ) then  

(6)          ,k k k j jb b bμ = −   ， , , ,k j k j k jμ μ μ = −   ; 

(7)       fi 
(8)     od 
(9)     if( * 2 * 2 2 * 2

1 , 1 1|| || || || || ||k k k k kb b bδ μ− − −> + ) then 

(10)    exchange kb and 1kb − , compute the Gram-Schmidt 

orthogonalization, max( 1, 2)k k= − ; 
(11)   else 1k k= + ; 
(12)   fi 
(13) od 
(14) return 1 2, , , n

nb b b Z∈ . 
In algorithm 1, step (4) to step (8) is also called size-

reduction. Suppose 2 2
1max(|| || , ,|| || )nM b b=  , then the 

standard LLL algorithm needs about 5 2( (log ) )O n M  
arithmetic operations for computing a LLL reduced lattice 
basis. With the fp-LLL algorithm (a fast sequential LLL 
algorithm), about 500 dimensional lattices could be reduced 
in the current personal computers. 

III. ANALYSIS OF PARALLEL BLOCK-BASED LLL 

ALGORITHM 

From the description of algorithm 1, it is difficult to 
implement it in parallel because of the continuous exchange 
and adjustment of two adjacent vectors. So people consider 
to split the basis into several blocks and parallelize them. In 
this section, we described and analyzed the traditional block-
based LLL algorithm firstly, and then we proposed the new 
scheme and discussed it. 

A. Traditional Block-based LLL Algorithm 

There are at most about 2( log )O n M  swaps that are 
necessary to reduce a basis. The basic thought of 
parallelization is to complete as much swaps as possible at 
one time and the early all-swap LLL algorithm is based on 
this idea. The swaps are divided into two cases-odd and even 
cases. At one time, all the odd or even stations should be 
completed and it is a block-based parallel algorithm with 
block-size 2 in fact. For a lattice L, suppose the block-size be 
l, without loss of generality, we assume n = ml. It is to say 
that the basis 1 2, , , nb b b  could be divided into m vector 
blocks, which of them has l vectors. The crucial idea of the 
block-based LLL algorithm is to calculate every block at one 
time and then combine them. Next we describe the block-
based LLL algorithm with block-size l and blocks m. 

Algorithm 2. Traditional block-based LLL algorithm 
Input: Lattice basis 1 2, , , n

nb b b Z∈  , reduced 

parameter δ (
1

1
4

δ< ≤ ) and block-size l 

Output: a LLL reduced with parameter δ  
(1)  compute the Gram-Schmidt orthogonalization; 
(2)  split the basis into m blocks of size l; 
(3)  repeat 
(4)  for( 1; ;k k m k= ≤ + + ) do 

(5)    1 2( , , , , )km km km lLLL b b b δ+ + + ; 
(6)  od 
(8)  for( 1; ;k k m k= ≤ + + ) do 

(9)     compute and size-reduce of 1,kl klμ + ; 

(10)   if( * 2 * 2 2 * 2
1 1,|| || || || || ||kl kl kl kl klb b bδ μ+ +> + ) then 

(11)      exchange klb and 1klb + ;  

(12)      compute and size-reduce ,kl iμ  and , 1j klμ + ; 
(13)   fi 
(14)   for( 1; ;k k m k= ≤ + + ) do 

(15)      update and size-reduce ,i jμ ; 
(16)   od 
(17) od 
(18) until there  is no swap; 
(19) return 1 2, , , n

nb b b Z∈ . 
In algorithm 2, step 4 to step 6 could be done in parallel 

with m computing units. For the other steps, we must 
implement them in sequential. So algorithm 2 could be 
realized with master-slave architecture. However, it should 
be noted that there are two problems restricting the parallel 
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efficiency. Firstly, after every block being done, the borders 
of the blocks have to be checked for possible additional 
swaps. Also the ,kl iμ  and , 1j klμ + should be recomputed if the 

swap occurs. Then the parallel efficiency will be decreased 
severely. Secondly, if there is one swap, the algorithm should 
be implemented again. It is to say that the load of every 
computing unit is not balanced, which also leads to the 
decreasing of parallel efficiency. 

For the second problem, because LLL algorithm should 
be judged and swapped continuously, the judges and swaps 
in the borders are not avoidable. So we cannot settle it unless 
we change the algorithm fundamentally. For the first 
problem, the judges and swaps could be done in parallel and 
the ,i jμ could be updated in the last. Then the operations in 

the borders could be implemented in parallel but the update 
in the last will be spent some extra operations. However, 
time of the update in the last is smaller than the operations in 
the borders. Based on this idea, we give a new scheme of 
parallel LLL algorithm. 

B. New Scheme of Parallel LLL Algorithm 

From algorithm 2, the sequential implementation in the 
borders limits the parallel efficiency. In fact, the ,i jμ could 

be updated in the last uniformly. Then we proposed the new 
scheme as follows. 

Algorithm 3. New scheme of parallel LLL algorithm 
Input: Lattice basis 1 2, , , n

nb b b Z∈  , reduced 

parameter δ (
1

1
4

δ< ≤ ) and block-size l 

Output: a LLL reduced with parameter δ  
There are m+1 computing units and m is the blocks in 

default. 1 2, , , mp p p  are computing nodes, and 0p  is 
control node, determining algorithm whether to terminate. 

(1)  0p : compute the Gram-Schmidt orthogonalization; 

(2)  0p : split the basis into m blocks of size l; 

(3)        ( 1) 1( , , , _ ; (1 ))k l kl ksend b b swap k p k m− + ≤ ≤ ; 
(4)   each node computes as follows: 
(5)  (1 )kp k m≤ ≤ : 

(6)      if( _ 1swap k == ) then 

(7)         1 2( , , , , )km km km lLLL b b b δ+ + + ; 

(8)          compute and size-reduce 1,kl klμ + ; 

(10)        if( * 2 * 2 2 * 2
1 1,|| || || || || ||kl kl kl kl klb b bδ μ+ +> + ) then 

(11)             exchange klb and 1klb + ;  

(12)             _ 1swap k = ; 
(13)        fi 
(14)        ( 1) 1 0( , , , _ ; )k l klsend b b swap k p− +  ; 
(15)     fi 
(16)  end 
(17) 0p : 

(18)     ( 1) 1( , , , _ ; )k l kl krecv b b swap k p− +  ; 

(19)     if( ( _ ) 0sum swap k == ) then end; 

(20)     else 
(21)        compute the Gram-Schmidt orthogonalization; 
(22)        goto step 3; 
(23)     fi 
(24)  end 
(25) return 1 2, , , n

nb b b Z∈ . 
In algorithm 3, the operations will be implemented in 

parallel and the parallel efficiency is increased obviously. 
The Gram-Schmidt orthogonalization in the last guarantees 
that the ,i jμ could be computed. So the output of algorithm 3 

is a LLL reduced basis. From the flow of algorithm 3, there 
are some extra operations in the last. However, the more 
time-consumed operations could be divided into the m 
computing units and done in parallel, which will decrease the 
running time. 

IV. EXPERIMENTAL RESULTS 

Algorithm 3 can get a LLL reduced basis and also has a 
good speedup. In this section, we implemented it in Sunway 
parallel processing system and offered some experimental 
results. 

There are 16 Intel Core2 DUO 2.4GHz CPUs with 4 
cores and 96GB main memory in the Sunway system. We 
use Linux with MPI compiler as the operation system and 
c++ as the programming language. The data types and some 
functions are based on package NTL [11]. In order to reflect 
the real factor, we wrote the basic source code for LLL 
algorithm but did not use the fpLLL algorithm with high 
efficiency in NTL. 

The experimental objects are random prime lattices. 
Every element of the basis is prime generated randomly. We 
generated some n = 30,40,50−dimensional lattices randomly 
and the data length is about 1000 bits. Firstly, we tested the 
lattices with original LLL algorithm. Then we tested them 
with the traditional parallel scheme and the new parallel 
scheme of LLL algorithm. The results are as in table 1. 

TABLE I.  THE TEST RESULTS 

Dimension Block-
size 

LLL 
algorithm in 
sequential 
(second) 

LLL algorithm in 
parallel (second)

Traditional 
scheme 

New 
scheme

30 5 71 130 64 

30 10 71 156 70 

40 5 371 662 221 

40 10 371 725 247 

50 5 922 1882 445 

50 10 922 1731 412 

 
From the above table, the efficiency of traditional parallel 

scheme of LLL algorithm is much lower compared to the 
original LLL algorithm in sequential and the speedup factors 
are between 1/2 to 1. With the new scheme, the parallel LLL 
algorithm has some advantage on the original one and the 
speedup factor is about 2. However, the advantage of the 
block-based algorithm in parallel is not obvious. The main 
reason is that the load of every computing unit is not 
balanced. Also the relevancy of the two adjacent vectors 
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decides that the swaps cannot be completely at one time. 
Therefore, in order to increase the parallel efficiency of LLL 
algorithm severely, we must improve the LLL algorithm in 
the foundation but not just use the idea of splitting the basis 
into several blocks. 

At the same time, for one basis of lattice, the efficiency 
will be not same if the block-size is different. For example, 
the running time of block-size 5 is smaller than block-size 10 
for 30-dimensional lattices. But for 50-dimensional lattices, 
the result is reversed. For the different dimensional lattices, 
how to choose the proper block-size to get the high parallel 
efficiency is an important issue for us. 

V. CONCLUSIONS 

Parallelization is an important way to improve the 
efficiency of algorithms, and we studied the parallel 
implementation technology of LLL algorithm in this paper. 
Based on the bottleneck analysis of the traditional block-
based LLL algorithm, we proposed a new parallel scheme on 
the LLL algorithm. The new scheme could get a LLL 
reduced basis and has a good speedup. At last, the 
experimental results verified the validity of the scheme. 

Although the new scheme has obvious advantage on the 
traditional scheme, the parallel efficiency of block-based 
LLL algorithm is not ideal, which limit the extension to high 
dimension of LLL algorithm severely. Therefore, how to 
improve lattice basis algorithms (not only LLL algorithm) 
fundamentally and design new algorithms suitable for the 
multiprocessor computer architecture becomes the research 
focus of this area in the next step. 
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