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Abstract—To solve the channel selection issue in opportunistic 
spectrum access, a new Q-Learning based algorithm for 
channel selection is proposed. The algorithm can lead 
secondary user to select channels with maximum cumulative 
reward, and maximize secondary user throughput. A 
Boltzmann learning rule is adopted to achieve well tradeoff 
between channel exploration and exploitation. From the 
simulation results, compared with random selection algorithm, 
the algorithm does not require prior knowledge or prediction 
models of the channel environment, yet can still select the 
optimal channel adaptively, improve the secondary user 
capability and attain to the convergence in short time. 

Keywords-cognitive radio; opportunistic spectrum access; 
learning; channel selection 

I.  INTRODUCTION 

Opportunistic spectrum access (OSA) [1], which mainly 
builds on the cognitive radio technology [2], has been 
regarded as a promising solution to lessen the spectrum 
scarcity problem and hence has drawn great attention. The 
overall design objective of OSA is to provide sufficient 
benefit to secondary users while protecting spectrum 
licensees from interference. One of the important and 
difficult problems in OSA system is that how to select the 
best available channel to achieve efficient spectrum 
exploitation. The channel selection strategy should not only 
primary users from harmful interference, but also satisfy 
secondary users requirement, and increase spectrum 
utilization. 

There have been many significant developments in the 
past few years on OSA. To optimize spectrum access while 
considering physical layer spectrum sensing and primary 
user’s traffic statistics, a decision-theoretic approach based 
on partially observable Markov decision process (POMDP) 
is proposed in[3],which can optimize secondary user’s 
performance, accommodate spectrum sensing error, and 
protect primary users from harmful interference. An 
extension of [3] is presented in [4-6]. A primary-prioritized 
Markov approach for dynamic spectrum access is proposed 
in [7], which models the interactions between the primary 
users and the secondary users as continuous-time Markov 
chains. However, there are still several unsolved problems 
for OSA systems. First most existing work is based on the 
assumption that the secondary users have full prior 
knowledge and prediction models of the environment’s 
dynamics and behaviors. Secondly, the environment is 
required to be static during the convergence of the 

algorithms. However, the assumptions are impossible in 
practice [8], because obtaining the prior knowledge 
consumes enormous network resources, e.g., time, power, 
and bandwidth, and may not be feasible in some scenarios; 
moreover, acquiring information about other users also leads 
to heavy communication overhead. Therefore, we should call 
for innovative techniques that can achieve good 
performances by learning directly from interaction with the 
environment and without needing models of such 
environments.  

Q-Learning [9] is a model-free, teacher-free, online 
reinforcement learning algorithm, which can solve the above 
problems. In this paper, we apply Q-Learning algorithm to 
channel selection strategy in OSA system. We consider an 
OSA system with the following characteristics: (1)the 
channel is realistic in practice, (2)the spectrum holes are 
time-varying, (3)no need to know the channel availability 
statistics. Moreover the secondary users learn from 
interaction with the environment using a Boltzmann rule to 
optimize the channel selection. 

This paper is organized as follows. In Section 2, we state 
the OSA system model and discuss its assumption. In 
Section 3, we formulate the Q-Learning algorithm for 
channel selection. In Section 4, we evaluate the proposed 
approach. Finally, we conclude the paper in Section 5. 

II. SYSTEM MODEL 

Assume that there are N channels available for 
transmissions by the primary and secondary users, each with 
bandwidth Bi(i = 1,⋯,N). Limited by its hardware constraints 
and energy supply, a secondary user can only tries to access 
one of the N channels opportunistically. The primary system 
is not slotted; primary users can access the channel at any 
time. The occupancy of each channel by a primary user 
evolves independently according to a continuous-time 
Markov chain with idle and busy state. The holding times are 
exponentially distributed with parameters λi

-1 for the idle and 
μi

-1 for the busy state, respectively. We stress the primary 
system is not slotted; primary users can access the channel at 
any time. Note that the primary traffic load ηi on band Bi can 
be expressed as μi

-1/(λi
-1+μi

-1).  
The secondary user employs a slotted communication 

protocol. At the beginning of each slot, a secondary user with 
data to transmit chooses one of the N channels according to 
the channel selection strategy, and uses the sensing outcome 
to decide if and in which channel to transmit. At the end of 
each slot, secondary user formulates the reward to update the 
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learning algorithm for channel selection. The basic slot 
structure is illustrated in Figure 1 

 
Figure 1 the slot structure 

III. A Q-LEARNING BASED CHANNEL SELECTION 

ALGORITHM 

A. Q-Learning 

Q-Learning [9] is typically formalized in the context of 
Markov Decision Process (MDP), which is a finite-state, 
discrete-time, stochastic dynamical system. Let S be the set 
of the environment state, S={s1, s2,..., sn} and A be a set of 
discrete actions, A={a1, a2,..., an} and r be the system reward. 
The objective of the learner is then to find an optimal policy 
π*(s) ∈ A for each s, which maximizes the cumulative 
measure of the reward r(s,a) received over time. The total 
expected discounted return over an infinite time horizon, is 
given by 

 0
0

( ) ( , ( )) |t
t t
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where 0≪ γ <1 is the discount factor. According to 
Bellman optimal rule, the maximal equation (1) can be 
expressed as 
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where R(s,a) is the mean value of r(st,at), Ps,s’(a) is the 
probability from state s to s′  when executing action a. 

Q-Learning does not need predict the environment model, 
yet can find the optimal strategy by simple iteration without 
prior knowledge of R(s,a). 

For a policy π, define a Q value (state-action value) as 
 ,( , ) ( , ) ( ) ( )s s

s S

Q s a R s a P a V sπ πγ ′
′∈

′= +   (3) 

which is the expected discounted cost for executing 
action at state s and then following policyπ thereafter. From 
equation (2) and (3), we can obtain 

 * *( ) max ( , )
a A

V s Q s a
∈

=  (4) 

 * *( ) arg max ( , )
a

s Q s aπ =  (5) 

Q*(s,a) can be obtained through the following recursive 
manner 

 1( , ) (1 ) ( , ) ( max ( , ))t t t t
a

Q s a Q s a r Q s aα α γ+ ′
′ ′= − + +  (6) 

where 1/ (1 ( , )), (0,1]visit s aα α= + ∈  is the learning rate, 
visit(s,a) is the visited times of state-action (s,a) pair. It has 
been shown [9] that if Q-value of each admissible (s,a) pair 
is visited infinitely often, and if the rate is decreased to zero 

in a suitable wan, then as t → ∞ , Qt(s,a) converges to Q*(s,a) 
with probability 1. 

B. A Q-learning based channel selection algorithm 

We employ Q-Learning to channel selection for OSA 
system, the channel selection and access structure is shown 
in Figure 2. As it noted, secondary user select a channel 
according to the channel selection strategy, and observe the 
wireless spectrum environment and decide whether or not to 
access the channel. In this manner, secondary user can obtain 
a reward and achieve interaction with the environment. We 
formulate the OSA as a finite Markov decision process 
(MDP), which consist of state set S, action set A, state 
transition function δ and reward function r: 

State set: S consists of m state {s1, s2,..., sm}. The 
secondary user is said to be in state si when it is using band 
Bi at the current time, i.e., no primary users are using band Bi. 

 
Figure 2 channel selection and access structure 

Action set: A consists of m actions, A={a1, a2,..., am}. The 
secondary user can switch to state si when executing action 
ai.. 

Transition function: : S A Sδ × → is the transition 
function, specifying the next state the system enters provided 
its current state and the action to be performed, δ(sj,ak)=sk. 

Reward function: the design of reward function r is based 
on the system performance. The objective is to obtain the 
maximal throughput when using the available spectrum. The 
reward at the time slot j is defined as: 

 ,( ) ( )
d

d
i T j i

s d

T
r j I t B

T T
= Φ

+
 (7) 

where Ii indicates whether the channel i is idle. ΦTd,j(t) is 
the idle time of the transmission time Td at the time slot j on 
channel i, Bi is the channel bandwidth. 

C. Boltzmann learning rule 

The obvious strategy for secondary user to select channel 
is always to choose the action with the maximal Q-value. 
However, it exists risks using the above strategy, because 
secondary user may limit into early training actions with 
high Q-value so as not to explore other higher actions. In 
practice, the convergence theory requires that each state-
action pair happens infinitely. Obviously, if secondary user 
always selects actions with the current maximal Q-value, it 
would not guarantee the infinity. In order to balance between 
“exploitation” and “exploration”, we employ the Boltzmann 
learning rule [10] and select channels with probability 
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where T is a positive parameter called the temperature. 
High temperatures cause the actions to be all (nearly) equally 
probable, and make secondary user randomly select all 
channel. Low temperatures cause a greater difference in 
selection probability for action s that differ in their value 
estimates, and lead secondary user to select the actions with 
higher Q-value (reward). 

According to the set of state, action, reward, and 
experiment strategy, our proposed Q-Learning based channel 
selection algorithm can lead secondary user to selection the 
channels that would maximize the system throughput. 
Moreover, the exploration strategy can guarantee that 
secondary user cannot always use the channels with maximal 
reward, but select channels with probability. This scheme 
guarantees that secondary user can cumulate experiences on 
different channels and select the optimal channel adaptively, 
improve the secondary user capability. 

IV. PERFORMANCE EVALUATION 

In this section, we study the proposed Q-Learning 
scheme by evaluating and comparing its performance with 
random-access scheme which select channels randomly. We 
employ Monte Carlo experiment and each point in the figure 
is the mean value of 1000 formulation at the same 
parameters. The algorithm of the channel selection is set as: 
the channel number m=7, channel bandwidth Bi = 200 kHz, 
the slot length Tl=100×10-3s, sensing time Ts=5×10-3s, and 
transmission time Td=95×10-3s, the discount factor γ=0.9. 

Throughout this section, we characterize the primary user 

traffic system load by 
1

(1/ )
m

ii
mϕ η

=
=  (which is denoted as 

fai in figures) and Cov=σ/φ, which, respectively, denote the 
average and the coefficient of variation of PU traffic load 
across all channels, where φ denotes the standard deviation 
of the traffic loads. The advantage of Q-Learning lies in its 
capability to converge to an approximately optimal behavior 
without needing prior knowledge of the PUs’ traffic behavior. 
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Figure 3 Performance of the proposed Q-Learning algorithm and random 

access algorithm (φ=0.5, Cov=0.5) 

Figure 3 plots the total throughput, which is normalized 
with respect to the maximal achievable throughput, which 
the secondary user achieves as a result of using our Q-
Learning and the random-access schemes. In the simulation 
scenario, the φ and Cov is all set to0.5. Simulation results 
show that our proposed Q-Learning based channel selection 
algorithm always outperform the random-access algorithm 
by learning from the experience and without prior knowledge 
of the environment as the slot time increasing. Furthermore, 
the proposed algorithm gradually converges to a stable 
throughput in a short time. 
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Figure 4 Performance of two different algorithms under different PU traffic 

load. 
Figure 4 plots the total throughput that secondary user 

achieves under our proposed Q-Learning and the random-
access schemes for two different PU load variations: φ=0.5, 
and φ=0.8, Cov is set to 0.5. As expected, the lower the φ, 
the more larger the achievable throughput under both 
algorithm. 

 
Figure 5 Performance and process of the proposed channel selection 

algorithm 
To further illustrate the efficiency of the proposed Q-

Learning channel selection algorithm, we plot in Figure 5 the 
channel selection process as the time increasing. In this 
simulation scenario, the slot number is set to 4000, φ=0.5, 
and Cov=0.5, the PU traffic load from channel 1 to 7 is set to 
[0.90, 0.88, 0.45, 0.44, 0.23, 0.43, 0.21]. As shown in Figure 
5, at the beginning, the secondary user is in the exploration 
state, and randomly access different channels in order to 
obtain more reward. As the time increasing, the percentage 
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of selecting the optimal channel 5 and 7 is gradually 
increasing; the channel selection algorithm is gradually 
transferring from the exploration state to the exploitation 
state. The percentage of selecting the optimal channels of all 
the channels is nearly 80%. These obtained results show that 
the proposed Q-Learning algorithm can efficiently learn 
from history and adapt to future channel selection through 
online learning, hence attain better system performance. 

V. CONCLUSION 

We have presented in this paper a Q-Learning based 
channel selection algorithm to solve the channel selection 
issue for OSA system without prior knowledge and 
prediction models of the environment. A Boltzmann learning 
rule is adopted to achieve well tradeoff between channel 
exploration and exploitation. Simulation results show that the 
proposed algorithm can achieve good channel selection for 
OSA system by learning from experience and without prior 
knowledge and prediction models of the environment. 
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