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Abstract—In this paper we present an overview of the most 
interesting object description techniques which depicts some 
descriptors that could be used to support higher level 
components for object recognition, behavior analysis, 
classification, and clustering. We are focused our attention on 
those techniques which are suitable to be used in what are 
known as real-life environments. In particular the underwater 
environment were taken into account since it shows a lot of 
difficulties concenring the low quality of the observed scene 
and the targets themselves (i.e. fish) which are characterized 
by fast and erratic movements and more degrees of freedom in 
motion than, for example, people or vehicles in urban 
environments. 
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I.  INTRODUCTION 

In the last few years a large number of computer 
applications have been developed regarding the use of 
specific target description algorithm on several research 
fields such as video surveillance for vehicles [1-3], animals 
[4-6] and humans [7-9] in order to support both 
detection/tracking tasks and classification/recognition tasks.  

While in a standard condition environment (i.e. indoor 
environment with motionless backgrounds and static light 
conditions) the recognition of object of interest in the 
observed scene and the development of description 
techniques for the identified target may results in a simple 
task, the characterization of target description techniques in 
real-life unconstrained settings  such as the underwater 
environment, implicates to handle different effects that 
usually occur in the observed scenes [24] such as sudden and 
gradual light changes, unexpected weather conditions 
variations (e.g. sudden cloudiness, storms and typhoons) 
which raise a worsening of image contrast, murky water that 
affect the clarity and cleanness of the water flow due to the 
drift and the presence of plankton, rapid formation of algae 
and filth on camera lens and background movements and 
variations which cause arbitrary changes in the scene. Fig. 1 
shows an overview of the considered environments. Also, 
differently from humans, in the underwater domain the 
targets (i.e. fishes) show erratic and fast movements (in three 
dimensions) that lead to frequent changes in size and 
appearance. For this reasons, the reviewed descriptors have 
been chosen in order to deal with the peculiarities of fish 
appearance and motion in their natural habitat making the 

above task insensitive to variations in the target’s position, 
size, appearance, orientation and scale with respect to the 
camera. 

 

Figure 1.  Samples of underwater environments 

In the next sections a taxonomy of the descriptor, 
classified by categories (color features, texture features, 
motion features and contour features), is proposed and the 
invariance of these descriptors against different types of 
changes (e.g. light intensity change) have been investigated 
for improving both the detection and tracking tasks and the 
recognition and classification tasks. In particular, for each 
technique a brief description of what it is, what it is useful 
for, how it is calculated and what it is invariant to,  is given. 

II. COLOR FEATURES 

A. Joint Histogram  

Pass and Zabih in [10] use this method as an alternative 
to color histograms since it  incorporates additional 
information (local pixel features) without sacrificing the 
robustness of color histograms. It is a multidimensional 
histogram created from a set of local pixel features. An entry 
in a joint histogram counts the number of pixels in the image 
that are described by a particular combination of feature 
values.  More precisely, given a set of k features (e.g. color, 
edge, texture, gradient magnitude, rank, etc…) where the lth 
feature has nl possible values, we can construct a joint 
histogram which is a k-dimensional vector, such that each 
entry in the joint histogram contains the number of pixels in 
an image that are described by a k-tuple of feature values. 
The size of the joint histogram is: 
  (1) 

that is the number of possible combinations of the values of 
each feature. Just as a color histogram approximates the 
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density of pixel color, a joint histogram approximates the 
joint density of several pixel features. 

B. olor Moments 

Color moments were treated both in [11] and in [12] as a 
set of measures that can be used to describe the images 
features of color. Since the distribution of color in an image 
can be interpreted as a probability distribution, the moments 
of that distribution can then be used as features to identify 
that image based on color.  Moments are calculated for each 
channel in an image, so that it is characterized by 9 moments 
(3 for each color channel). In fact, most information is 
concentrated on the low-order moments: the first moment 
(mean), the second moment (variance) and the third moment 
(skewness). The three color moments are considered as 
image features and can be defines as: 

Mean:  (2) 

Variance:  (3) 

Skewness:  (4) 

A function of the similarity between two image 
distributions is defined as the sum of the weighted 
differences between the moments of the two distributions. 
Formally this is: 

 

 (5) 

where are the two image distributions being compared, 
 is the current channel index (e.g. 1 = H, 2 = S, 3 = V),  is 

the number of channel (e.g. 3),  and  are the first 
moments (mean) of the two image distributions,  and  
are the second moments (variance) of the two image 
distributions,  and  are the third moments (skewness)  of 
the two image distributions and  are the weights for each 
moments specified by the users. 

III. TEXTURE FEATURES 

A. Gabor filter 

Such a filter described by Kruizinga et al. in [13] is linear 
and local and is characterized by a preferred orientation and 
a preferred spatial frequency. It acts as a local band-pass 
filter with certain optimal joint localization properties in both 
the spatial domain and the spatial frequency domain. Gabor 
filters are applied to obtain the G − Maps. A two dimensional 
Gabor function g(x, y) can be described by the formula (6) as 
follow: 

  (6) 

where λ, ψ, σ, γ are respectively the orientation, the scale,  
the mean and the standard deviation of the considered Gabor 
filter. 

Given an image I(x, y), the Gabor transform is obtained 
by a convolution between the image I and the function g. It is 
possible to use 6 scales and 4 orientations, thus obtaining 24 
complex images. Then, the mean and the standard deviation 
of the magnitude of each of these complex images are taken 
as descriptors. 

B. Scale-Invariant Feature Transform (SIFT) 

The SIFT standard method proposed by Lowe in [14] is a 
technique for extracting distinctive invariant features from 
images, used to perform reliable matching between different 
views of an object or scene. The gradient of an image is 
shift-invariant, while under light intensity changes, i.e. a 
scaling of the intensity channel, the gradient direction and 
the relative gradient magnitude remain the same. Also, 
because the SIFT descriptor is normalized, the gradient 
magnitude changes have no effect on the final descriptor. 
The features produced by SIFT are invariant to image scale 
and rotation and provide robust matching across a substantial 
range of affine distortion, change in 3D viewpoint, addition 
of noise, and change in illumination. Moreover the features 
are highly distinctive, in the sense that a single feature can be 
correctly matched with high probability against a large 
database of features from many images.  

Operatively a keypoint descriptor is created by first 
computing the gradient magnitude and orientation at each 
image sample point in a region around the keypoint location. 
These are weighted by a Gaussian window, indicated by the 
overlaid circle in the left image above. These samples are 
then accumulated into orientation histograms summarizing 
the contents over 4 x 4 sub-regions: the length of each arrow 
corresponds to the sum of the gradient magnitudes near that 
direction within the region. The right figure in Fig. 2 shows a 
2x2 descriptor array computed from an 8x8 set of samples 
(left figure). 

  

Figure 2.  Image gradient (right) and Keypoint descriptor (left) 
reported from [14] 

C. SIFT with Global Context 

This approach has been proposed by Mortensen et al. in 
[15] and consists of a feature descriptor that augments SIFT 
with a Global Context vector that adds curvilinear shape 
information from a much larger neighborhood. One of the 
most evident limit of the classical method is that  SIFT 
typically fail to consider global context to resolve 
ambiguities that can occur locally when an image has 
multiple similar regions. With the global context the 
mismatches can be reduced when multiple local descriptors 
are similar. In fact, rather than count distinct edge points, 
with Global Context the maximum curvature at each pixel (x, 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1645



y) is computed as the maximum eigenvalue of the Hessian 
matrix: 

  (7) 

where rxx and ryy are the second partials of the image in x and 
y, respectively, and rxy is the second cross partial. 

D. PCA-SIFT 

This method proposed in [16] examines the local image 
descriptor used by SIFT, but instead of using SIFT’s 
weighted histograms, the Principal Components Analysis 
(PCA) to the normalized gradient patch is applied. To be 
more precise PCA-SIFT consists of a i) pre-computation of 
an eigenspace to express the gradient images of local 
patches, ii) given a patch, compute its local image gradient 
and iii) project the gradient image vector using the 
eigenspace to derive a compact feature vector. The latter is 
significantly smaller than the standard SIFT feature vector, 
and can be used with the same matching algorithms. For 
these reasons this method have the advantage that is more 
distinctive and robust to image deformations than the 
standard SIFT representation increasing accuracy and 
providing faster matching. 

E. Covariance Matrix 

This method proposed by Donoser and Bischof in [17] 
and Lakmann in [18] is a second order statistics about the 
correlation of pixel pairs for a set of topological pixel 
relations. In particular the spatial relations of pixel values 
can be calculated for the different color components of 
involved pixels. The spatial relations can be analysed i)inside 
each color plane, ii) between the color components of pixels 
in different color planes and iii) for a set of feature built out 
of each pixel belonging to an object’s region.  These 
representations take into account both the spatial and 
statistical properties, unlike histogram representations (which 
disregard the structural arrangement of pixels) and 
appearance models (which ignore statistical properties).  The 
most important characteristic of covariance matrices depends 
on their independence to variations of colors in image 
sequences. This problem in color constancy is often caused 
by separate fluctuations in the brightness of the color 
channels. So the covariance matrix features could be 
invariant both for additive and multiplicative noise. The 
main shortcoming of this approach is the amount of time 
required for the computation of the covariance matrix; 
however, approaches based on integral images have been 
proposed in order to improve the speed.  

IV. MOTION FEATURES 

A. Motion Vector Analysis 

It is a representation of the pattern of apparent motion of 
objects, surfaces, and edges in a visual scene caused by the 
relative motion between an observer (e.g. a camera) and the 
scene [19][20]. The most used methods for motion vectors 
assessment are typically based on the optic-flow estimation 

(i.e. Horn–Schunck or Lucas–Kanade approaches), with the 
advantage that it does not have to find feature point 
correspondence. The motion vector field (or optical flow in 
gradient-based approach), is estimated based on the 
instantaneous change in image intensity. Assuming that the 
intensity along the motion trajectory is always constant, this 
estimation often bases on minimizing the optical flow 
constraint and some local smoothness constraints. This 
makes optical flow have the property of obtaining the 
estimated motion field in fine resolution, more close to 
“true” motion. A drawback of these methods is that the 
obtained optical flow does not represent the true motion, but 
only the motion projection on the direction of image gradient. 
Basically in motion estimation, an object keeps its brightness 
unchanged in the image sequence, so let the optical flow 
(motion) at pixel (x, y) be (u(x, y), v(x, y)), Ex be the 
derivative of image intensity in x-direction, Ey be the 
derivative of image intensity in y-direction, and Et be the 
derivative of image intensity in t-direction, classical optical 
flow constraint can be described as shown in (8): 

  (8) 

For a particular image point (x, y), the values of u and v 
are restricted by this linear equation. 

V. CONTOUR FEATURES 

A. Curvature Scale Space and Curvature Points 

The CSS (Curvature Scale Space) method proposed by 
Ghosh and Pektov in [21] and Spampinato et al. in [4] 
provides a set of boundary descriptors which can be used to 
characterize the object’s contour even though it is affected by 
3D transformation in the observed scene. CSS is executed by 
iteratively smoothing the curve until the number of points 
where the curvature is zero (zero crossing points) is equal to 
zero. The CSS image represents curvature zero crossings 
during shape evolution in the plane (u, σ), where u is the 
normalized arc length between consecutive zero crossing 
points and σ is the width of Gaussian kernel used for shape 
smoothing. The curvature is defined as the changing rate of 
curve slope, according to the formula: 

  (9) 

where u is the curve formed by the computed boundary. To 
find the CSS image, we iteratively smooth the extracted 
boundary. 

Let g(u, σ) be a 1 − D Gaussian kernel of width σ, then 
the components of the evolved curve Λσ may be represented 
by X(u, σ) and Y(u, σ) according to the properties of 
convolution: 

  

  (10) 

where (∗) is the convolution function. 

The derivatives are: 
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   (11) 

where gu(u, σ) and guu(u, σ) are, respectively, the first and the 
second derivative of the gaussian function. The same holds 
for Yu(u, σ) and Yuu(u, σ). 

The curvature of the evolved digital curve is: 

  (12) 

As σ increases, the shape of Λσ changes. Thus, we have to 
calculate several times the curvature zero crossing points of 
Λσ during the curve evolution, until when the number of such 
points will be zero. For each iteration (value of σ) the arc 
length between consecutive zero crossing points is plotted in 
the CSS image. 

B. Fourier Descriptor 

These contour features, used by Arbter et al. in [22] and 
Sener and Unel in [23], are independent form the object’s 
position, orientation, scale and slant since usually fish can be 
at any position and orientation relative to the camera 
[ref_artemis]. Operatively the extracted boundary can be 
expressed as a sequence of coordinates s(k) = [x(k), y(k)], 
where x(k), y(k) are the coordinates of the points of the 
boundary. Each pair of coordinated can be considered a 
complex number, i.e. s(k) = x(k) + j • y(k). The discrete 
Fourier transform (DFT) is: 

  (13) 

for u = 0, 1, 2...K, where K is the number of points belonging 
to the identified boundary. The complex coefficients a(u) are 
the Fourier descriptors and provide a means for representing 
the boundary of a two-dimensional shape. Since it is not 
feasible to use all the Fourier descriptors in the classification 
step due to their high number, in order to describe the 
frequency variability of the shape we use a histogram of their 
modulus with 30 values. The histogram of Fourier 
descriptors is invariant to affine transformation. 

VI. CONCLUSIONS 

In this paper a survey on object description method for 
real-life environment have been proposed. The reviewed 
techniques have been chosen to deal with the challenges of 
the underwater domain in order to support the users when 
design high level applications for object recognition, 
classification and behavior analysis. The considered 
approaches are ready for production run and could be refined 
with several techniques (some already available and some to 
be developed) in order to cover the difficulties related both to 
the object movements during the observation in their natural 
habitat (fish in our case study) and the changes in the 
considered scene triggered by the environmental factors. In 
the next years, we would expect new work than simply 
“apply” existing algorithms to the underwater unconstrained 
research area, in order to demonstrate principles, techniques 
and real advantages of using the available methods on 
different outdoor environments.    

REFERENCES 
[1] Faro A., Giordano D., Spampinato C., “Integrating location tracking, 

traffic monitoring and semantics in a layered ITS architecture”, IET 
Intelligent Transport Systems 5, 197 (2011). 

[2] Faro A., Giordano D., Spampinato C., “Evaluation of the traffic 
parameters in a metropolitan area by fusing visual perceptions and 
CNN processing of webcam images”, IEEE Transactions on Neural 
Networks, (6) 1108-1129, 2008 

[3] Faro A., Giordano D., Spampinato C., “Adaptive background 
modeling integrated with luminosity sensors and occlusion processing 
for reliable vehicle detection”, IEEE Transactions on Intelligent 
Transportation Systems, (4) 1398-1412, 2011 

[4] C. Spampinato, D. Giordano, R. Di Salvo, J. Chen Burgher, R. B. 
Fisher, G. Nadarajan, “Automatic fish classification for underwater 
species behavior understanding”, Proceedings of the ACM Int. 
Workshop Anal. and Retrieval of Tracked Events and Motion in 
Imagery Streams (ARTEMIS), October 29th, 2010, Florence, Italy. 

[5] Spampinato C., Palazzo S., Giordano D., Kavasidis I., Lin F.-P., Lin 
Y.-T., “Covariance based fish tracking in real-life underwater 
environment”, VISAPP 2012 – Proceedings of the International 
Conference on Computer Vision Theory and Applications, 409-414, 
2012. 

[6] C. Spampinato, J. Chen Burger, G. Nadarajan, R. B. Fisher, 
“Detecting, tracking and counting fish in low quality unconstrained 
underwater videos, Proceedings of VISAPP 08, January, 22nd – 25th, 
2008, Madeira, Portugal. 

[7] Faro A., Giordano D., Design memories as evolutionary systems 
socio-technical architecture and genetics, Proceedings of the IEEE 
International Conference on Systems, Man and Cybernetics, 4334-
4339, 2003. 

[8] Di Salvo R., Faro A., Giordano D., Spampinato C., People flow 
control using cellular automata and computer vision technologies, 
Advances in Intelligent and Soft Computing, Volume 159 AISC, 
Issue1, 2012, Pages 95-104, Future Computer and Control Systems, 
FCCS, 2012. 

[9] A. Faro, D. Giordano, C. Spampinato, “An automated tool for face 
recognition using visual attention and active shape models analysis”, 
Proceedings of the 28th IEEE EMBS Annual International 
Conference, Aug 30th - Sept 3rd, 2006, New York City, USA. 

[10] G. Pass, R. Zabih, “Comparing images using joint histograms”, 
Multimedia System, 7 (1999), pp. 234–240. 

[11] J.-L. Shih,  L.-H. Chen, “Colour image retrieval based on primitives 
of colour moments”, Vision, Image and Signal Processing, IEEE 
Proc., vol.149, no.6, pp. 370- 376, Dec 2002 doi: 10.1049/ip-
vis:20020614. 

[12] N. Keen with R. Fisher, “Color Moments” Feb. 10, 2005. 

[13] P. Kruizinga, N. Petkov, S. E. Grigorescu, “Comparison of texture 
features based on Gabor filters”, Proceedings of the 10th International 
Conference on Image Analysis and Processing, Venice, Italy, 
September 27-29, 1999, pp. 142-147. 

[14] D. Lowe, “Distinctive image features from scale-invariant key-
points”, Int. J. Computer Vision, vol. 60, pp. 91-110, 2004. 

[15] E. N. Mortensen, H. Deng, L. Shapiro, “A SIFT Descriptor with 
Global Context”, 2005 IEEE Comput. Society Conference on Comput. 
Vision and Pattern Recognition (CVPR ’05) – Vol. 1. 

[16] Y. Ke, R. Sukthankar, “PCA-SIFT: A more distinctive representation 
for local image descriptors”, 2004 IEEE Comput. Society Conference 
on Comput. Vision and Pattern Recognition (CVPR ’04) – Vol. 2. 

[17] M. Donoser, H. Bischof, “Using covariance matrices for unsupervised 
texture segmentation” 19th International Conference on Pattern 
Recognition (ICPR 2008), pp.1-4, 8-11 Dec. 2008. 

[18] R. Lakmann, “Textural Features in Multi-Channel Color Images”, 
ACCV 2002, The 5th Asian Conference on Computer Vision, 23-25 
Henuary 2002, Melbourne Australia. 

[19] P-C. Chung, C.L. Huang, E.L. Chen, “A region-based selective 
optical flow back-projection for genuine motion vector estimation”, 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1647



Pattern Recognition, Volume 40, Issue 3, March 2007, Pages 1066-
1077, ISSN 0031-3203, 10.1016/j.patcog.2006.06.019. 

[20] S. Ali, M. Shah, “A Lagrangian particle dynamics approach for crowd 
flow segmentation and stability analysis” Computer Vision and 
Pattern Recognition, 2007. CVPR '07. IEEE Conference on , vol., no., 
pp.1-6, 17-22 June 2007 doi: 10.1109/CVPR.2007.382977. 

[21] A. Ghosh, N. Petkov, “Effect of high curvature point deletion on the 
performance of two contour based shape recognition algorithms”, 
International Journal of Pattern Recognition and Artificial 
Intelligence Vol. 20, No. 6, pp. 913-924, 2006. 

[22] K. Arbter, W.E Snyder, H. Burkhardt, G. Hirzinger, “Application of 
affine-invariant Fourier descriptors to recognition of 3-D objects” 

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 
vol.12, no.7, pp.640-647, Jul 1990 doi: 10.1109/34.56206. 

[23] S. Sener, M. Unel, “Affine invariant fitting of algebraic curves using 
Fourier descriptors”, Pattern Analysis & Applications Volume 8, 
Numbers 1-2 (2005), 72-83, DOI: 10.1007/s10044-005-0245-6. 

[24] C. Spampinato, S. Palazzo, B. Boom, J. Van Ossenbruggen, I. 
Kavasidis, R. Di Salvo, F.-P. Lin, D. Giordano, L. Hardman, and R. 
Fisher. Understanding  fish behavior during typhoon events in real-
life underwater environments. Multimedia Tools and Applications, 
pages 1-38, doi: 10.1007/s11042-012-1101-5. 

 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1648




