
Design and VLSI implementation of a Java System-on-Chip

Xuming Lu, Desheng Yang, Hongzhou Tan
School of Information Science and Technology, Sun Yat-sen University

Guangzhou, China
E-mail: luxuming@189.cn

Abstract—A new architecture of Java System-on-Chip (SoC) is
proposed for executing Java bytecodes directly. This Java SoC
integrates a Java core, a Floating Point Unit (FPU), a Direct
Memory Access (DMA) controller, and some other popular
peripheral controllers on a single chip. All modules are
interconnected with Advanced Microcontroller Bus
Architecture (AMBA) standard buses. IO reuse is adopted to
reduce the number of chip pins. The proposed SoC is
implemented in very large scale integration (VLSI) of 130nm
CMOS Logic process. After being taped-out and packaged, the
chip is tested with a verification board. The performance is
evaluated by Dhrystone and Whetstone benchmarks. The
running results show that the proposed SoC has a better
performance compared with VP6000 and JOP3.

Keywords-Java SoC; AMBA; VLSI; benchmark score

I. INTRODUCTION

Java technology has been developing rapidly since it was
released in 1995, due to its great characteristics of versatility,
efficiency, platform portability, and security. Platform
portability of Java is achieved by compiling the Java code to
an intermediate representation called Java bytecode, instead
of directly to platform-specific machine code. Java bytecode
instructions are analogous to machine code, but are intended
to be interpreted by a unique virtual machine for the host
hardware. Therefore, Java virtual machine (JVM) connects
high-level Java programs and underlying hardware.

Despite the advantages mentioned above, programs
written in Java have a reputation for being slower and
requiring more memory than those written in C. This is
partly due to the software-implemented JVM, since it has
low execution efficiency or requires relative large memory
resources. It will be a serious problem when implemented in
hardware-restricted embedded devices such as cell phones or
TV set-top boxes. The performance may not be satisfying as
software-implemented JVM is such a burden for embedded
devices.

To deal with the execution efficiency problem, three
approaches may be summarized: dedication, translation, and
acceleration. Processors, such as PicoJava II [1] and JOP3
[2], belong to dedicated Java processor. Processors of this
kind take bytecodes as their native instructions and execute
them directly. In the translation approach, a small hardware
unit is added between the instruction fetch and decoding
units of a general-purpose processor core to convert most of
the bytecodes into native instructions at run-time. Examples
using this method are ARM Jazelle [3] and JA108 [4].
Coprocessors, such as the AU-J2000 [5] and REALJava [6],

execute Java bytecodes so that the system can execute the
application programs written by both Java and other
programming languages supported by the host processor.
Such coprocessors provide good support to Java without
affecting the compatibility of the host general-purpose
processors, but chip area and power consumption increase
significantly, which are critical factors in embedded devices.

This paper proposes a 32-bit AMBA based Java SoC
named JM8BC013A with a Java core, a Floating Point Unit
(FPU), a Direct Memory Access (DMA) controller and some
other popular peripheral controllers integrated. The paper
focuses on the design and implementation as well as the
performance of the Java SoC, which shall be called an
updated version of Java SoC VP6000 [7]. The running
results show that the proposed Java SoC work better
compared with VP6000 and JOP3.

This paper is organized as follow. Section II presents the
design of the proposed Java SoC. Section III is devoted to
the implementation of the SoC, including the FPGA and
VLSI implementations. Section IV describes the
performance results and the comparison with other related
processors. Finally, in Section V, conclusions are derived.

II. SYSTEM DESIGN

JM8BC013A is designed to be dedicated to Java
applications. As a Java SoC, it is based on a Dual-AHB
AMBA bus, with a modified Java core called JOP, FPU,
DMA and some other peripheral controllers attached. The
architecture of JM8BC013A is shown in Fig. 1.

A. Dual-AHB AMBA Bus Architecture
As shown in Fig. 1, there exist two sets of Advanced

High-performance Buses (AHB) and one Advanced
Peripheral Bus (APB), which is called Dual-AHB AMBA
bus architecture. The AMBA AHB is for high-performance,
high clock frequency system modules whereas APB is
optimized for minimal power consumption and reduced
interface complexity to support peripheral functions. The
AHB acts as the high-performance system backbone bus [8].

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1658

The proposed Dual-AHB AMBA bus architecture divides

AHB into two layers, a high-speed and low-speed. On the
high-speed AHB bus, three masters and two slaves are
connected along with the high-speed AHB arbiter. The three
masters are Java core, Debug module and DMA controller
respectively. The two slaves are AHB2AHB bridge and the
default slave module. On the low-speed AHB bus, the
AHB2AHB bridge is the only one master. Six peripheral
controllers that require relative high speed or high data
throughput, i.e., USB, I2S, LCD, VGA, Ethernet, and
memory system, are connected as slaves. Besides, the
AHB2APB bridge is connected to the low-speed AHB bus as
a slave. For the APB bus, the only master is the AHB2APB
bridge and the eight slaves are UART, Timer, Interrupt
request (IRQ), general purpose input/output (GPIO), I2C,
PS2, SPI, and clk_manager.

With the Dual-AHB AMBA bus architecture, modules on
the two layers of AHB can operate at different clock
frequencies. The ratio of the frequencies can be configured
dynamically with the corresponding register in the
clk_manager module. With a proper ratio, total dynamic
power consumption can be reduced without lowering the
whole performance of the chip.

B. Bus Access Priority
As can be seen, there are three masters connected on the

high-speed AHB bus. Since only one master can access the
bus at a time, it comes up with a bus access priority problem.

Java core is a stack based fully pipelined architecture
with single cycle execution of microcode instructions. This
reduced instruction set computer (RISC) Java processing
core uses a four-stage pipeline to accomplish the execution.

Debug module is used to initialize the inner RAMs which
are supposed to contain the instruction set and other runtime
related information. It loads all the microcodes, jump table

addresses, variables, etc., from external flash into the chip [9].
Then the Java core runs properly after initialization [10].

DMA controller is designed to accomplish the mass data
transmission between any two modules. Therefore, it is a
master in accessing the high-speed AHB bus.

As described above, the debug module should obtain the
highest bus access priority. After the initialization, the access
for the bus is released from the debug module. During
runtime, Java core is the main core taking charge of all
hardware modules. Therefore, it has the second highest
priority. The lowest priority belongs to DMA controller,
which ensures that Java core can access the AHB bus even in
a transmission task.

For the low-speed AHB bus and the APB bus, the
AHB2AHB bridge and the AHB2APB bridge are the only
masters, respectively. Thus, no access priority scheme is
required for these buses.

C. Floating Point Unit
To support floating-point arithmetic operations in

hardware, a 32-bit floating point unit (FPU) is implemented.
It supports addition, subtraction, multiplication, and division.

As a hardware accelerator, the communication between
Java core and FPU should be as direct as possible to ensure a
higher efficiency. Thus the FPU is integrated into the
extension module directly, instead of mounting on the
AMBA bus as a peripheral module, as shown in Fig. 1.

The microcodes stfadd (0x0E), stfsub (0x06), stfmul
(0x07), and stfdiv (0x1A) are introduced for FPU to read
parameters and start a calculation. The microcode ldfpu
(0xE6) controls FPU to return operation results back to the
top register of the stack.

With these microcodes, the four single-precision floating
point type bytecodes, namely fadd, fsub, fmul, and fdiv, can
be implemented with microcode segments, instead of Java
methods. The mapping relationship is shown in Fig. 2.

D. IO Reuse
With a number of peripherals integrated, JM8BC013A is

competent for various kinds of embedded applications.
However, it also leads to a large number of chip pins, which
will greatly increase the complexity and cost for packaging

Microcode segment:
stfadd
nop

nop
ldfpu nxt

fadd 8 nops

Microcode segment:
stfsub
nop

nop
ldfpu nxt

fsub 8 nops

Microcode segment:
stfmul
nop

nop
ldfpu nxt

fmul 13 nops

Microcode segment:
stfdiv
nop

nop
ldfpu nxt

fdiv 36 nops

Figure 2. Mapping relationship between bytecodes and microcodes

APB Bus

Low-speed AHB Bus

High-speed AHB Bus

JAVA CORE

Debug DMA Def_slv

AHB Interface

4-Stage
Processing

Unit

MUL

High
Speed
AHB

Arbiter

AHB2AHB
Bridge

Memory System

LCD

I²S

USB

VGA

AHB2APB
Bridge

Ethernet

cache

IEEE754
FPU

UART
SPI

PS2

I²C GPIO IRQ Timers

clk_managerSRAM

SDRAM

NORFlash

NANDFlash

clk_gen rst_gen

IOSN

Figure 1. Architecture of Java SoC JM8BC013A

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1659

the chip. Therefore, IO reuse method is adopted to reduce the
number of chip pins, as shown in Fig. 3.

For output reuse, output1 and output2 are the output pins
before reuse, and output is the output pin after reuse.
output=output1 when sel=0, output=output2 when sel=1.
Similarly,for input reuse, input1=input when sel=0,
input2=input when sel=1.

A special register named io_reg should be configured to
select which peripheral controller uses the reused IO pads.

By adopting IO reuse, 101 external pins have been saved.
There are finally 297 external pins, among which 216 are
functional pins and the other 81 are power pins.

E. Address Mapping
In the AMBA based system, a united address mapping

method for memory system and peripheral controllers is
proposed. The address mapping of AHB bus is shown in
TABLE I.

Since the AHB2APB bridge is the only master on APB
bus, all visits from AHB to APB must go through this bridge.
Thus the addresses of modules on APB bus should be within
0x80000000-0x8FFFFFFF.

F. Low-Power Design
In order to reduce the power consumption, the operating

frequencies of modules are designed to be configurable.
Some modules allow a standby operating mode when idle.
This is realized by lowering its operating frequency or
shutting down the clocks, such as Debug module. The
module clk_manager in Fig. 1 is used to store the
configuration information, and the module clk_gen generates
clocks as configured in clk_manager.

Although the Dual-AHB AMBA bus architecture makes
it possible to set different frequencies for each bus, some
modules mounted on the low-speed AHB bus may operate at
a lower frequency due to their data throughputs. For example,
the LCD module operates at 100MHz, whereas the USB
module operates at 48MHz and Ethernet module at 25MHz.
Therefore, these modules operate at different frequencies,
and have asynchronous interfaces for mounting on AHB bus.

III. IMPLEMENTATION

The proposed Java SoC is coded in hardware description
language (HDL). The prototype is verified by simulation and
FPGA implementation. Besides, the implementation in very
large scale integration (VLSI) technology has been taped out.

A. VLSI Implementation
The design has been implemented on a single VLSI chip

using 130nm 1-poly 6-metal layer CMOS technology, which
is SMIC (Semiconductor Manufacturing International
Corporation) 130nm standard cell library. The results of
implementation are listed in TABLE II. The dies are
packaged into CABGA-400, whose body size is
17mm×17mm×1.2mm. Fig. 4 presents the final layout of
JM8BC013A and the packaged chip.

TABLE I. AHB SLAVES ADDRESS MAPPING TABLE

Address Range Mapping Module
0x00000000-0x7FFFFFFF Memory System
0x80000000-0x8FFFFFFF AHB2APB Bridge
0x90000000-0x9FFFFFFF LCD
0xA0000000-0xAFFFFFFF VGA
0xB0000000-0xBFFFFFFF USB
0xC0000000-0xCFFFFFFF I2S
0xD0000000-0xDFFFFFFF Ethernet
0xE0000000-0xEFFFFFFF DMA
0xF0000000-0xFFFFFFFF Default_slv

Figure 3. IO reuse scheme

TABLE II. RESULTS OF VLSI IMPLEMENTATION

Technology SMIC 130nm

Gates 59.3K

Area 4.8mm × 4.8mm
Maximum clock frequency 330 MHz

Supply voltage 3.3V & 1.2V

Total dynamic power 147 mW

(a)

(b)

Figure 4. JM8BC013A: (a) final layout (b) packaged chip

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1660

B. Verification Platform
A hardware verification platform is designed to verify the

final SoC. The platform consists of a core board and a
mother board. The core board contains the minimum system
of the Java SoC, whereas the mother board has other
modules to verify the peripheral interfaces of the chip. The
verification platform is shown in Fig. 5.

IV. PERFORMANCE

The performance of a processor can be evaluated by
running Dhrystone and Whetstone benchmarks. Since the
operating frequency of a processor has a great impact on its
benchmark score, the units DMIPS/MHz and MWIPS/MHz
are introduced.

 The integer performance score of proposed Java SoC is
4.076 DMIPS when running a Java version Dhrystone
benchmark at 250MHz. Therefore, the Dhrystone benchmark
score of JM8BC013A is 0.0163 DMIPS/MHz. As the
floating-point performance, the Whetstone benchmark score
is 0.0138 MWIPS/MHz.

The performance of JM8BC013A is compared with JOP3,
VP6000 and S3C2440AL by running the same Java

benchmarks. It is worth mentioning here that S3C2440AL is
running a JVM called CrE-Me on WinCe5.0 operating
system. The comparison results are shown in Fig. 6.

It can be seen that the integer performance of
JM8BC013A is 31.5% higher than VP6000’s and 55.2%
higher than JOP3’s. JM8BC013A supports floating-point
operations whereas VP6000 and JOP3 do not. JM8BC013A
achieves about 83.7% of the Java floating-point performance
of S3C2440AL.

V. CONCLUSIONS

A new architecture of a Java SoC has been proposed for
real-time embedded systems. It is based on a Dual-AHB
AMBA bus, with a Java core, an FPU, a DMA, and some
other peripheral controllers integrated. The proposed design
has been implemented in VLSI, and the chip has been
successfully taped out and packaged. Both integer and
floating-point performance have been measured by running
Java benchmarks. The benchmark scores of JM8BC013A
show a better performance in comparison with previous
design VP6000 and JOP3.

For future research, more optimized Java core in terms of
the number of pipeline and multicore architecture are
expected. Also, some other common functional modules,
such as graphics acceleration unit, are expected to be
integrated into the SoC.

REFERENCES
[1] H. McGhan and M. O'Connor, “PicoJava: a direct execution engine

for Java bytecode,” Computer, vol.31, no.10, Oct. 1998, pp. 22-30,
doi: 10.1109/2.722273.

[2] M. Schoberl, “JOP: A Java Optimized Processor for Embedded Real-
Time Systems,” Phd dissertation, http://www.jopdesign.com, 2005.

[3] ARM Ltd Std., “Jazelle Technology for Java Application,” 2001.

[4] NAZOMI Communications Inc., “JA108  Multimedia Application
Processor (Product Brief),” 2003.

[5] Aurora VLSI Inc., “AU-J2000: Super High Performance Java
Processor Core (Data Sheet),” 2000.

[6] Z. Liang, J. Plosila and K.Sere, “Asynchronous Java accelerator for
embedded Java virtual machine,” Proc, IEEE Symp. Emerging
Technologies: Frontiers of Mobile and Wireless Communication,
IEEE Press, vol. 1, MayJune 2004, pp. 253- 256, doi:
10.1109/CASSET.2004.1322968.

[7] W. W. Dai, H. N. Wang and H. Z. Tan, “AMBA Bus-Based Java
System-on-Chip,” Circuits and Systems for Communications (ICCSC
2008), May 2008, pp. 604607, doi: 10.1109/ICCSC.2008.134.

[8] ARM Ltd Std., “AMBA™ Specification Rev2.0,” May 1999.

[9] Z. R. Chen and H. Z. Tan, “Logic Structure of Programmable
Instructions,” Journal of Electronics (CHINA), vol. 26 Sep. 2009, pp.
711714, doi: 10.1007/s11767-009-0022-6.

[10] Z. R. Chen and H. Z. Tan, “Dynamic instruction set load-in method
for Java SoC,” IP 08 Conference, 2008, Available:
http://www.design-reuse.com/articles/20091/java-processor-soc.html.

Figure 5. Verification platform of JM8BC013A

Figure 6. Comparison of Java performance

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1661

