
An Efficient Algorithm Based on MapReduce For Computing Frequent Item sets

JIN Da-wei, SONG Jie, LIU Bin, ZHAO Cheng
PLA University of Science & Technology

Nanjing, China
dave_nj@163.com, adamsongs@163.com, l.bin.2008@gmail.com, nanjzc@189.cn

Abstract--As traditional method mining for association rules
between items in large and grand data sets is inefficient. In this
paper we present an efficient method called BPMRA which is
based on mapreduce and partition. We have compared
BPMRA algorithm based multi-node and partition based
single node method and performed some experiments. It turns
out that BPMRA possesses high parallelism good stability and
scalability, especially suitable for mining for association rules
in large and grand data sets.

Keywords--association rules; frequent item sets; mapreduce;
partition algorithm

I. INTRODUCTION

The mining for association is one of basic questions in
data mining, and the core issues of the mining for
association are that how to find the frequent item sets. The
Apriori algorithm [1] is a classical algorithm of the mining
for association, but there are also some inadequacies in it,
for example, it requires multiple scans to the transaction
data sets, and generates a larger set of candidates.
Especially in the case of large data sets, it’s very inefficient.
So in this paper we presents a efficient algorithm for
computing frequent item sets based on Partition[3] and
MapReduce[2]-BPMRA(Based Partition and MapReduce
Algorithm).

II. BASIC CONCEPT

A. Partition algorithm
For the Apriori algorithm’s lack of data mining in the

large-scale data sets, A.Savasere presents the partition
algorithm; the core idea of the algorithm is to divide the
original big data sets into series small parts that contains
only small amount of data sets logically. According to the
given minimum support, it can compute the frequent item
sets of each part, merge the frequent item sets of all the
parts, then get the global candidate frequent item sets, by
scanning the original data sets, compute the support count
of each item set. At last, the complete set of frequent item
sets will be generated. The following two properties ensure
the correctness of the partition algorithm.

Property Ⅰ If an item set is frequent in the whole
situation, then it must be frequent in one part at least.

Property Ⅱ If an item set is not frequent in all parts,
and then it must not be frequent in the whole situation.

The proof:
Set D: data sets; Divided D into n parts; Di: (1≤i≤n):

part i; |D|: the total number of transactions in D; min_sup:
minimum support; ID: the item set I in D.

Property Ⅰ: Using reduction ad absurdum, set item set
I is frequent in the whole situation, assume item set I is not
frequent in all parts. It means IDi.count<|Di|*min_sup
(1≤i≤n), sum to n in both sides respectively, can get easily:

= =

∗<
n

i

n

i
i

D Dmin_supcountI i

1 1

||.

It can be got from the question set:

=

=
n

i

DD countIcountI i

1

..

And

min_supDDmin_sup
n

i
i ∗=∗

=

||||
1

It can release ID.count<|D|*min_sup. It is in
contradiction with the question set which is ID.count≥
|D|*min_sup. This is the end of proof.

Property Ⅱ: The item set I is not frequent in all parts,
it means IDi.count<|Di|*min_sup (1≤i≤n), sum to n in both
sides respectively, we can get easily:

= =

∗<
n

i

n

i
i

D Dmin_supcountI i

1 1

||.

It can be got from the question set:

=

=
n

i

DD countIcountI i

1

..

And

min_supDDmin_sup
n

i
i ∗=∗

=

||||
1

It can release ID.count<|D|*min_sup . This is the end of
proof.
B. MapReduce programming model

MapReduce is a distributed parallel programming
model which deals with large-scale data. It abstracted the
progressing into one operating platform and two
user-defined functions: Map and Reduce. The Map function
is responsible for processing sub-data set and generate
intermediate results; the Reduce function is responsible for
reduction of the intermediate results and generates the final
results. The operating platform is responsible for the
scheduling, fault-tolerant, data-managing of Map and
Reduce mission.

MapReduce largely reduce the difficulty of a
distributed program written to deal with large-scale data.
The data processing task is completed so that users need not
care about the underlying details of the case. The
application of MapReduce is very wide, for example,
sequence, word count, Web connection diagram reversal,
log analysis, inverted sort index build, document clustering,
machine learning and the machine translation based on
statistical.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1703

Currently, in addition to the MapReduce framework of
Google, Hadoop [4] of Apache also achieve the analogous
MapReduce framework.

III. BPMRA ALGORITHM

A. Main idea
According to the partition algorithm, BPMRA

algorithm is also divided into two stages:
StageⅠ: According to the data sets D and appointed

parts n it can be generated n Map mission, at the same time,
start n’（n’ is related to the computing node numbers j,
commonly n’=j*2，n’≤n）Map mission parallel compute
frequent item set, until the n missions are all over. Then a
Reduce mission is started to merge the results of all Map
missions, in order to generate the global candidate frequent
item sets;

StageⅡ: According to the data sets D, appointed parts
m(m can be the same with n in stageⅠ)and the complete set
of the global candidate frequent item sets CG generated in
stageⅠ, it can be generated m Map missions, at the same
time, start m’ Map missions parallel compute CG the support
count of each item set, until m missions are all over. Then
start a Reduce mission to merge the support count of the
same frequent item sets, the sum of the support count in CG
can be got. At last, according to given minimum support
and the sum of the total number of transactions, it can be
computed to get the complete set of frequent item sets LG.
B. Algorithm description

In order to describe the algorithm expediently, define
the sign below:

)(, jippDp jii ≠∩⊆ : pi is the part of D;
G
kC : The k item in the global candidate frequent item

sets;
CG: The complete sets of the global candidate frequent

item sets;
G
pi

C : is same with CG, but each frequent item set all

have its support count in the part pi;
ip

kL : The k item frequent item set in part pi;

LPi: The complete sets of the frequent item sets in part
pi;

LG: The complete sets of the global frequent item sets;
min_sup: minimum support;
|pi|: The total number of transactions in part pi;
|D|: The total number of transactions in the data sets.

a. StageⅠ
Input: data sets D, the minimum support min_sup and

the part n;
Output: The complete sets of the global candidate

frequent item sets CG.

StageⅠexecuting schematic diagram

In the Map mission of computing frequent item set,
adopt vertical data format ({item: tidlist}), item is the name
of the item, and the tidlist is the set of identifier affairs
which concludes item. The advantage of this method is that
the tid set of each k item set have the complete information
to compute the support. So it needs not to scan the data sets
when it computes the k+1(k≥1) item set.

The description of Map mission：
read partition pi (1≤i≤n)
generate frequent 1 itemsets ipL1

and every itemset
with tidlist

for (k=2; ∅≠−
ip

kL 1
;k++) do

 for (int i=1; i<size of ip
kL 1−

; i++)do

 l1=item i of ip
kL 1−

 for (int j=i+1; j≤ size of ip
kL 1−

; j++)do

 l2=item j of ip
kL 1−

if((l1[1]=l2[1])∧(l1[2]=l2[2])∧…∧(l1[k-2]=l2[k-2])
∧(l1[k-1]＜l2[k-1])) then

 c=l1[1]·l1[2]·l1[k-2]·l2[k-1]
 c.tidlist=l1.tidlist∩l2.tidlist
 if(|c.tidlist|≥min_sup*| pi |) then
 { }i ip p

k kL L c= ∪

 endfor
 endfor
 endfor
 get result i i ip p p

1 k
k

L L L= ∪ and transfer it to reduce

task.
The description of Reduce mission：
for(k=1; ∅≠ip

kL ;k++)do

i

n
pG

k k
i 1

C L
−

=

endfor
get G G

k
k

C C= and transfer it to second phrase’s map

task.
b. StageⅡ
Input: data sets D, The complete sets of the global

candidate frequent item sets CG and parts m;

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1704

Output: The complete sets of the global frequent item
sets LG.

StageⅡexecuting schematic diagram

The description of Map mission：
read partition pi (1≤i≤m) and candidate frequent item

sets CG
for every transaction record t∈pi do
 for every candidates c∈CG do
if t contains c then
 c.count++
 endfor
endfor
get G

pi
C (c∈CG with its support count) and transfer it

to reduce task
The description of Reduce mission：

for all candidates c∈CG do

. . ()
i

m
G
p

i 1
c count c count c C

−

= ∈

if(c.count≥min_sup*|D|) then
 LG= LG∪{c}
endfor

C. Algorithm summary
There are several advantages below in the BPMRA

algorithm:
1)Compare with the Apriori algorithm, the BPMRA

algorithm uses vertical data format when it computes the
frequent item set, avoid multiple scanning to the data sets,
the BPMRA algorithm only need to scan twice, raises the
efficiency greatly.

2) The BPMRA algorithm uses the computing method
of “Big into small, small parallel”; the stability is well when
the amount of data increases and the computational
complexity rise.

3) The BPMRA algorithm possesses high scalability
and parallelism, by means of constantly adding compute
nodes to extend, and through extending to raise the compute
parallelism.

4)The BPMRA algorithm requires low with machines,
only need several ordinary PC machine, and will be able
to have a strong computing power。

Certainly, there are also several disadvantages in the
BPMRA algorithm:

1)Because of using vertical data format when it
computes the frequent item sets, it involves two big
collection seeking intersection operator when it seeks the
support of the item set, so it may need to spend slot of time,
currently the time complexity is O(n+m) (n、m are two
collection for intersection).

2) Because the master node needs to coordinate
individual compute nodes, it will produce certain network
time consuming, especially it will consume more when the
quality of network is poor. But generally this situation can
be avoided in the internal LAN.

IV. EXPERIMENT AND ANALYSIS

In order to further verify the efficiency of the BPMRA
algorithm, we have done some experiments in this paper.
The experiment environment is: There are four DELL PC
machine. The CPU frequency is 2.4GHz, the memory is
1GB, and the system is Fedora9 Linux; one machine is
master node, responsible for the coordination of compute
nodes; the other three machines are slave nodes, responsible
for computing. The algorithm is written based on Hadoop
version 0.20.0 and Java. The experiment data is generated
by IBM Data Generator; there are three data sets altogether:
T5.I2.D1000K, T5.I2.D5000K, and T20.I4.D1000K. We
will compute respectively by the BPMRA algorithm and the
Partition algorithm based on one node, the divided parts are
the same. The following graphs are the comparison of the
result:

0

50

100

150

200

250

2 1.5 1 0.75 0.5 0.33 0.25
minimum support(%)

t
i
m
e

(
s
e
c
)

BMRP Partition

Graph 1. The result of T5.I2.D1000K data set

0

200

400

600

800

1000

1200

1400

1600

2 1.5 1 0.75 0.5 0.33 0.25
minimum support(%)

t
i
m
e

(
s
e
c
)

BMRP Partition

Graph 2. The result of T5.I2.D5000K data set

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1705

0

200

400

600

800

1000

1200

1400

1600

2 1.5 1 0.75 0.5 0.33 0.25
minimum support(%)

t
i
m
e

(
s
e
c
)

BMRP Partition

Graph 3. The result of T20.I4.D1000K data set

We can conclude by the experiment that the BPMRA
algorithm is not well when the amount of data is not big and
the computational complexity is not difficulty, for example,
when the data set is T5.I2.D1000K and the support is
greater than 0.75%(Graph 3)，the BPMRA algorithm is not
better than the Partition algorithm which is based on one
node. This is mainly caused by the network time-consuming
between each computing nodes and master node, and less
time consumed by the calculation itself. With the increasing
of the amount of data and the rising of the computational
complexity, the time consumed by the calculation will more
than the time consumed by the network(Graph 4 and Graph
5). With the lowering of the minimum support, the increase
of the BPMRA algorithm is more stable, but the increase of
the Partition algorithm based on one node is very obvious.
In contrast, the BPMRA algorithm shows a clear advantage.

V. CONCLUTION

In this paper, as the traditional computing algorithm for
frequent item set is inefficient when the amount of data is
big, we present the BPMRA algorithm, this algorithm runs
in several computing nodes and achieve to compute highly
parallel. We have done several experiments; the result
shows that the BPMRA algorithm is viable and efficient
when it is mining frequent item sets whether the huge
amounts of data or high computing complexity data.

REFERENCES
[1] AGRAWAL R, IMIELINSKI T, SWAMI A. Mining Association Rules
Between Sets of Items in Large Databases[C]//In Proceedings of 1993
ACM SIGMOD International Conference on Management of Data.
Washington, DC: ACM Press, 1993:207-216

[2] JEFFREY DEAN, SANJAY GHEMAWAT. MapReduce: Simplified
Data Processing on Large Clusters [C]//In Proceedings of the 6th
Symposium on Operating System Design and Implementation. San
Francisco: Google Inc., 2004:10-23.

[3] SARVASERE A, OMIECINSKY E, NAVATHE S. An Efficient
Algorithm for Mining Association Rules in Large Databases[C]//In
Proceedings of the 21st International Conference on Very Large Databases.
San Francisco: [s.n.], 1995:432-444.

[4] Hadoop project [EB/OL]. (2009). http://hadoop.apache.org.

[5] TOM WHITE. Hadoop: The Definitive Guide [M]. California：O’Reilly
Media, Inc.，2009.

[6] JIAWEI HAN, MICHELINE KAMBER. Data Mining Concepts and
techniques, Second Edition [M], 2008.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1706

