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Abstract—The last decade have seen tremendous improvement 
in the development of new image information processing and 
computational tools based on sparse representation. Today, in 
the information sciences, computer vision and image process-
ing, the development of sparse representation algorithms led to 
convenient tools to transient compressed image (data) rapidly, 
to remove noise from image, and to get the super-resolution 
image. In the study of sparse representation of images, 
overcomplete dictionary is used. It contains prototype image-
atoms. In this way, the images are described by sparse linear 
combinations of theses atoms. In this field has concentrated 
mainly on the design of a better dictionary. The generalized K-
Means algorithm (K-SVD) [1] taught us a very good case. This 
paper has proposed an optimization algorithm adopting the 
Bayesian tracking and K-SVD analysis method. We analyze 
this algorithm and demonstrate its results on image data. 

Keywords-Sparese Repressentation; Bayesina Prior; K-SVD; 
Atom decomposition, Dictionaty. 

I.  INTRODUCTION 

A. Sparse Representation Modeling 

Consider a matrix n KD R ×∈  with n K< , and define 
the underdetermined linear system of equations Dx y= . 
This system has more unknowns than equations, and thus it 
has either no solution, if b is not in the span of the matrix A, 
or infinitely many solutions.  

In order to solve a problem that has an infinite number of 
solutions, we shall hereafter assume that D is a full-rank 

matrix, implying that its columns span the entire nR . 

Defining the general optimization problem ( )JP : 

 ( ) ( ): min . . .J
x

P J x s t y Dx=  (1) 

A signal ny R∈ can be represented as a sparse linear 

combination of atoms , 1,2,...,jd D j K∈ = . The vector 

Kx R∈ contains the representation coefficients of the signal 
y.  

In engineering, this sparsest representation is the solution 
of either [2]:  

 ( )0 0
: min . . .

x
P x s t y Dx=  (2) 

Or, we can rewrite the relaxed equality: 

 ( ) 2

0, 0 2
: min . . .

x
P x s t y Dxε ε− ≤  (3) 

From a linear combination angle, the optimization model: 

 ( )
0

2

0, 02 0
: min . . .

x
P y Dx s t xτ τ− ≤  (4) 

In this paper, we use (4) to analyze optimization problem.  

B. Overcomplete Dictionary 

A traditional overcomplete dictionary (choosing pre-
constructed dictionaries, such as DCT, Wavelets [3], 
contourlets, curvelets [4], and more) are typically limited in 
their ability to handle the signals. Furthermore, most of those 
dictionaries are restricted to signals of a certain type 
(particular to stylized ‘cartoon-like’ image content, clear 
edge and texture structure). Therefore we need an approach 
to optimize a dictionary that overcomes these limitations. 
Normally, we use sparse solution to update the overcomplete 
dictionary. 

In this paper, we consider a overcomplete dictionary that 
each atom is updated individually based on Bayesian prior. 
The proposed algorithm can converge faster than the K-SVD 
algorithm.  

II. GENERALIZING THE K-MEANS (K-SVD) 

ALOGONITHM 

A. The K-Means Algorithm 

K-Means is an algorithm of cluster analysis. We defined 

N numbers of signals { } 1
,

N

i i
Y y N K

=
= >> , a code-

book { }
1

K

j j
D d

=
= . 

In vector quantization (VQ) [5], if D is preset, then, for 
each signal 
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2 2

22
, .i j i Kk j y De y De∀ ≠ − ≤ −  (5) 

If only one atom is allowed in the signal decomposition 
and furthermore, the coefficient multiplying it must be one. 
There is a variant of the VQ coding method. 

In this case, the overall MSE of the Y can be written as  

 
22

2
.E Y DX= −  (6) 

The objective function: 

 { }2

2,
min . . , .i kD X

Y DX s t i x e− ∀ =  (7) 

Where, vector (0,0,...,0,1,0,...,0,0)i

i K i

e
−

=   . 

The K-means applies two steps at the process of each 
iteration: 

• Assignment step: calculate the X 
• Update step: calculate the D 

B. The K-SVD Algorithm 

We are liable to come to K-SVD modeling via K-Means 
Algorithm [1].  

Let overcomplete { }
1

K n K
j j

D d R ×

=
= ∈ , 

signals { } 1

N

i i
Y y

=
= and sparse solutions { } 1

N

i i
X X

=
=  

From (4), we can get an optimization problem: 

 { }2

02 1,
min . . , .iD X

Y DX s t i x τ− ∀ ≤  (8) 

In K-SVD algorithm, first it fixes and aims to find the 
best coefficient matrix. In this case, an approximation pursuit 
method is used. As long as we predetermined number of 
nonzero entries 0τ , the approximate solution can be found.  

Second, it needs to search for a better dictionary. This 
process updates one column at a time, fixing all columns in 
D except one kd , and finding a new column kd and new 

values for its coefficients that best reduce the MSE. 
From (8), we isolate the dependency on kd , the penalty 

term can be rewritten as 
22

2

2
1 2 2

.
K

T T T
j j j j k k

j j k

Y DX Y d x Y d x d x
= ≠

 
− = − = − − 

 
   

(9) 

Where, T
jx stands for the j-th row of X. the update targets 

both kd and T
kx , and refers to the term in parentheses, 

 .T
k j j

j k

E Y d x
≠

= −  (10) 

as a known pre-computed error matrix. 

The optimal kd and T
kx minimizing equation (9) are the 

rank-1 approximation of kE , and can be obtained via an 

SVD, but this typically would yield a dense vector T
kx , 

implying that we increase the number of non-zeros in X. 
For this problem, define kω as the group of indices 

pointing to examples{ }iy that use the atom kd , those where 

( )T
kx i is nonzero. 

 { }|1 , ( ) 0 .T
k ki i K x iω = ≤ ≤ ≠  (11) 

Define a restriction operator kΩ as a matrix of size 

kN ω× , with ones on the ( )( ),k i iω th entries and zeros 

elsewhere.  
Then, we may return to (9).  

 
2

2
.T

k k k k kE d xΩ − Ω  (12) 

Minimizing equation (9) is convergent. 
Of course, also we can use the Least-Squares method to 

solving 

 ( )2

22
2

min .
T
k k

T T
TT T k k k

k k k k k k k
x

k

E d
E d x x

dΩ

ΩΩ − Ω  Ω = (13) 

Once updated, it is kept fixed, and we update kd by 

( )
( )

2

22

2

min .
k

TT
k k k kT

k k k k k kd TT
k k

E x
E d x d

x

Ω Ω
Ω − Ω  =

Ω
     (14) 
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Task: Train a dictionary D to sparsely represent the 

data{ } 1

N

i i
y

=
, by approximating the solution to the problem 

posed in (4). 
Initialization: Initialize mainloop=0 and 

Initialize Dictionary: Build (0)
n KD R ×∈ , either by using 

random entries, or using K randomly chosen examples. 

Normalization: Normalize the columns of (0)D  

Main Iteration: Increment mainloop by 1, and apply 
Sparse Coding Stage: Use a pursuit algorithm to 
approximate the solution of 

2

( 1) 002
ˆ arg min . .i i mainloop

x

x y D x s t x τ−= − ≤  

Obtaining sparse representations ˆix for 1 i N≤ ≤ . 

These form the matrix ( )mainloopX . 

Dictionary-Update stage: Use the following pro-
cedure to update the columns of the dictionary and  

III. OPTIMIZATION ALOGONITHM BASED ON BAYESIAN 

TRACKING 

A. Detailed Description 

We shall discuss the new optimization algorithm in detail. 
First, Let us revert to the core questions in dictionary-
learning.  

Let us consider the following objective function: 

{ } 1

2

02 0
, 1

min . . ,1 .
N

i i

N

i i i
D x i

y Dx s t x i Nτ
= =

− ≤ ≤ ≤  (15) 

In terms of well posedness of the dictionary-learning 
problem presented above, a fundamental question is whether 
there is a uniqueness property underlying this problem. 

In this paper, we will use a Bayesian approach to 
calculate the approximate solution.  

Assuming the signal is defined as k kE Dx ε= + . 

From (10) and (12), the relationship between the source 
signals and the dictionary is defined as 

 , .k k k k j jk k
j k

R E d x x b v
≠

= = + +  (16) 

There, ,jk j kb d d= , ,k kv dε= . 

We know the estimated value of other coefficients 
(previous iteration). Then, (16) can be rewritten as 

 ( )ˆ ˆ .k j jk k j j jk k
j k j k

R x b x x x b v
≠ ≠

− = + − +   (17) 

Here, ˆ jx is the estimate of j-th coefficient.  

For convenience, definition of as follows: 

 ( )ˆ ˆ, .k j jk k j j jk k
j k j k

m x b x x b vγ
≠ ≠

= = − +   (18) 

Then, we can get the assumption about 1H and 2H . 

 1

2

: .

: .
k k k k

k k k

H R m x

H R m

γ
γ

− = +
− =

 (19) 

( )1 |P H R and ( )2 |P H R are effective posterior 

probability and invalid posterior probability of the k-th atom 
in the dictionary [6]. 

In this modeling, the value of spare coefficient effective 
probability 1-p and invalid probability p is defined. If the 

sparse coefficient errors ˆj jx x− to meet the Gaussian 

distribution (variance is defined as 2
, xj εδ ), then kγ is also a 

Gaussian distribution (variance is defined as 2

kγδ ). So, we 

can get the following formula: 

2 2 22 2 2

( ) ( )1
exp exp .

2( ) 22 ( ) 2k k kk k k

k k k k

xx

R m C mp p

γ γγ γ
δ δ δπ δ δ πδ

   − − − −− >      ++    

 

  (20) 

There, sparse coefficient to meet the Gaussian 

distribution (variance is defined as 2

kxδ ). p  , 2

kγδ  and 2

kxδ  

is an unbiased estimate of the source signal. 
By the (20), we can get the judgment rule of the 

hypothesis testing: 
2 2 2

2 2
1 2 2

( | ) , 2( ) ln .
1

k k k

k k

k k

x
j k k k k x

x

p
P x H R m Th Th

p
γ γ

γ
γ

δ δ δ
δ δ

δ δ

 +
 = − > = + ⋅
 − 

 

  (21) 

We can get initial threshold and the final threshold as 
follows: 

(0)

(0) ( )| , | 2 ln .
1ek

k k e
e

p
Th Th Th Th

pγγ

γ
δ δδ

δ
δ

δ
∞

=

 
= = ≈ ⋅  − 

 

  (22) 

From the (22), analysis shows that the threshold 

converges to ( )
kTh ∞ .  

B. Optimization Algorithm 
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obtain ( )mainloopD : Repeat for 1, 2,...,k K=  

1) Define the group of examples that use the 
atom kd , 

[ ]{ }( )|1 , , 0k mainloopi i K X k iΩ = ≤ ≤ ≠  

2) Compute the residual matrix 
T

k j j
j k

E Y d x
≠

= −  

3) Restrict kE by choosing only the columns 

corresponding to kΩ  

4) Under the judgment rule of the hypothesis 

testing, decrease 2
, xj εδ , iterative calculation 

until the threshold to the minimum ( )
kTh ∞  

Stopping Rule: if the change in 
2

( ) ( ) 2mainloop mainloopY D X− is small enough, stop. 

Otherwise, apply another iteration. 
Output: the desired result is D 

 

 
(a)                           (b)                           (c) 

 

Figure 1.  The Optimization Algorithm. 

IV. EXAMPLES 

We turn to present an elementary experiment performed 
on natural image data. We train a dictionary for sparsely 
representing patches of size 8×8 extracted from the image 
Barbara, shown in Fig. 2(a). We extract these patches to train 
on. The number of iterations of the K-SVD, proposed 
optimization algorithm was 50 and 20.  

The truncated Bayesian prior process infers the subset of 
dictionary elements employed to represent the data.  

A. Filling In Missing Pixels 

35% pixels missing image and reconstructions are shown 
in Fig. 2. In this case, the algorithm gets stuck on a saddle-
point steady-state solution.  

Figure 2.  Filling in missing pixels, (a) source image, (b) 35% pixels 
missing image, the PSNR is 31.23, (c) reconstructed results, the PSNR is 

32.57  

B. Reconstruction Error 

Fig. 3 displays a comparison of compressive sensing (CS) 
Measurement when applying BP, OMP, K-SVD and 
proposed optimization algorithm on the Barbara image. The 
relative reconstruction errors were computed and are 
displayed.  

Figure 3.  Reconstruction results. 

V. CONCLUSION 

In this paper, we presented an optimization algorithm 
based on Bayesian. It can significantly speed up convergence 
on the dictionary update stage. And it is concluded that more 
accurate atoms can be obtained. But, there are two problems 
cannot be solved. First we cannot guarantee that these 
algorithms obtain the global minimum of the penalty 
function posed in (4). Second, we cannot guarantee a 
monotonic nonincreasing prenalty value as a function of the 
iterations. The multi-scale analysis may be an effective way 
to solve these problems.  
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