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Abstract—The state feedback control using sum of sguares
technique (SOStools) combined with the nonlinear observer is
applied to the depth control of a submarine. The mathematical
model of the submarine is rewritten as the linear-like form,
then the uncertainty caused by the variation of the
hydrodynamic coefficients is treated as the disturbance, which
can be estimated online by a nonlinear observer. The method
can provide good robustness against the nonlinearity as well as
the uncertainty, which isverified by the simulation.
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l. INTRODUCTION

The submarine control system is a complex nonlinear
system with parameter uncertainties and strong coupling.
Large numbers of scholars are participating in this study, and
put forward some more fruitful thoughts. Guoliang[1]
derived a variable structure controller for submarine. Jian[2]
discussed a submarine movement control in vertical plane
and derived a robust arithmetic based on mix-sensitivity by
studied the state function of submarine linear mode. Shu[3]
derived a improved variable structure control method for
multiple input-multiple output systems of submarine. The
nonlinear disturbance observer achieved good effects in
actual system, such asin missiles[5], and aircrafts [6].

This paper proposes a new approach which combines a
state feedback controller with a nonlinear disturbance
observer. The state feedback controller is formulated using
the sum of squares technique (SOStoals), and the nonlinear
disturbance observer is designed to estimate the nonlinear
internal system uncertainty and un-modeled dynamics. The
simulation results of submarine in the vertical plane show the
controller stability and the observer effectiveness.

Il. STATE FEEDBACK CONTROLLER USING SOSTOOLS
Consider the system x= f (x)+ g(X)u written in the linear-
like form:
x= A(X)X+ B(X)u
where A(x) and B(x) arepolynomial matricesin x .
For the system (1), let A (x) denotes the j -th row

of A(x) where J={j,, j,,..., j,} denote the row indices of

e

B(x) whose corresponding row is equal to zero, and define
(X,.%, % ), then P() is formulated by X.

Our objective is to find a state feedback controller
u(x) = K(x)P*(x)x which renders the equilibrium point
x =0 stable. Here we present the lemma 1.

Lemma 1 [4] For asymmetric polynomia matrix P(x)
whichisnonsingular for al x , we have

X=

P
ox

g—P(x) =P L (9P @
%

Lemma 2 [4] For the system (1), suppose exist an Nx N
symmetric polynomia matrix P(X), an NxN polynomial
matrix K(x), two constants & >0 and &, >0 , such that
the following sum of squares problem:

v (PR-&l)v

3)

—v," | AP+PA" +KTBT +BK -3, a—P(AJ.><)+52| v,
X,

“4)

are sums of squares, wherev; e R" v, e R . Then the

state feedback stabilization problem is solvable, and a
controller that stabilizes the system is given by

u(x) = K(x)P(%)x 5)
Proof: Assume that there exist solutions P(X) and K(X)
to (3)-(4). Define the functionV (x) as follows:
V(x) = X"PH(R)x (6)
We will show V(x) is a Lyapunov function for the
closed-loop system. Thetime derivate of V (x) isgiven by

PO 3|5 s LA (904 A + BOK (P (0] PR+ (7)
]

PR A+ BK ()P (R) || x
Now, (7) implies that
P < T T T
-2 ;eja(x)(A,- () +P(RAX)" +K() B(X)" + (8)
A(X)P(X) +B(X)K(x)+¢&,1 <0

Multiplying the last expression from the left and right
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by P(X) , and using the Lemmal. If (4) holds with &, >0
for x=0, then %(x) is negative definite, and therefore,

the zero equilibrium is asymptotically stable. Finaly , if
P(X) isaconstant matrix, then V(x) isradially unbounded,
and the stability holds globally.

IIl.  EASE NONLINEAR DISTURBANCE OBSERVERS

In actua application, we should consider the interna
system uncertainty and un-modeled dynamics. Consider the
system as follows:

Xx=A(X)x+ Bd +B,(x)u ©)

For the system (9), the uncertainty caused by the
nonlinear internal system and un-modeled dynamics is
treated as the disturbance. For al X, suppose exist a norm
bounded nonsingular matrix B, , such that the following
expression isequal:

B,(X)B, =B, (10)

So we can get the disturbance observer from the
following lemma.

Lemma 3[5] For the system (6), a honlinear disturbance
observer is designed to estimate the disturbances d , which
are dowly time varying. Given by

d=z+ p(x)
2=-1(x)B,z=1(x)(B,p(x) + A(X)x+ B, (X)u)
where d and z are the estimate of the unknown disturbance
and internal state of the nonlinear observer, respectively , and
p(x) is a nonlinear function to be designed. The nonlinear

observer gain 1(x) isdefined as
ap(x)
[(x)=——=
9 oX
If 1(X)B, >0, the estimation error is global exponential

stability for all xe R":
Proof: The estimation error is defined as

e, =d-d (13)
Consider the disturbance d is slowly time varying
(d = 0), then the time derivative of e, isgiven by

(11

(12)

& =d-d=0-2- p(x)=—2—¥x (14)

Submiting (9) and (11), we have
& =1(¥)Bz+1(X)B p(x)-1(x)Bd =-1(x)Be (15)

If 1(X)B, >0, then the estimation error e, is globa

exponentia stability for all xe R".
After the disturbance is estimated by the observer (11),
the new closed-loop system controller is given by

u =u-B,d
Then the system (9) can be written as

(16)

x= A(X)x+ B, (d —d)+B,(X)u (17)
Then the new controller can eliminate the effect of

disturbances, and can improve the control performance of
closed-loop system.

IV. DEPTH CONTROLLER OF SUBMARINE

Suppose that only consider the vertical motion of
submarine, the other axises motion are neglected. The
vertical motion model submarine can be written as follows:

W=a,sw+a,sq+ 6‘13W‘M + amQ‘q‘ +a,Sn0+h,5°5, +h,5°6,

G = 8, SW+ 8, SO+ 8 WW + 85, 0[ 0] + 85 SN + b, S°6), +b,,8°6,

Z=wcosf—ssing

6=q

(18)

wherew is heave velocity; qis the pitch rate; @is pitch

angle; zis submarine depth; &, is bow hydroplane angle; 6, is

stern hydroplane angle; the others are kinetic parameters.

Let x=[w q z 6]" ,u=[6, J,]', the system (18) can be
rewritten as the linear-like form:

a;s+aW a,s+ay,ld 0 a

8,S+a,|W a,S+ay,ld 0 a, 0" ba
| 1 4 ° - b,s* b,s’ u (19)

1—502 0 0 s 0 0

0 1 00 0 0

Suppose the desired state is x,=[00 z O] , let
e=X-X,, the sysem (18) can be written as the error

equation as follows:
é= A(x)e+B(X)u (20)

In order to verify the effectiveness of the nonlinear
disturbance observer, we design a disturbance observer to
estimate the uncertainty caused by the pitch angle velocity
state equation . The parameters of the disturbance observer
can be chosen asfollows:

I(x)=[00.10 Q] (21)
B =[010 0]T (22)
Bo — > blZ > _bll (23)
u“(b,b, —b,b,,) u(b,b, —hb,b,)
V. SIMULATIONS

For the error equation (20), we design a state feedback
controller using the result stated in lemma 2. The values of

& and &, arefixed at 0.001.

In this paper, our objective is that the submarine drives
from 30m to 60m and moves straight at the certain depth

(60m) in the end. The initial state is x, =[0 0 30 0], the
desired stateis x" =[0 0 60 0] .
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&, = —0.09wW” — 0.44wq —1.35wz + 0.36W6 —
67.150° —0.106 + 5.84qz + 0.016* — 0.026z +

. (24
0.237° +7.9w—-34.05q + 0.690 +1.2z2-5- 8,
8, =-0.11w —0.90ng—1.8nz+1.300—- 35151 —
0.0406+5.70z+0.02¢7 —0.0462+0.537 +10.1W— 05)

~

21.059+1.26+15z-10.3-6,

The time history of the depth, the pitch, the bow
hydroplane angle, and the stem hydroplane angle are shown
from Fig.1 to Fig.4 .From the simulation results, it can be
shown that the controller can complete control of the spatial
movement of submarine mission, and effectively against the
nonlinearity as well as the uncertainty.
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VI. SUMMARY

According to the simulation in this paper, the state
feedback controller combined with the nonlinear disturbance
observer has a good control performance against the
nonlinearity and the uncertainty. The state feedback control
using the sum of squares technique (SOStools) can complete
control of the spatial movement of submarine mission. The
controller combined with the nonlinear disturbance observer,
which can well eliminate the control error which caused by
the model uncertainy and satisfactory dynamic behavior.
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