
Design and Implementation of a Quadruple Floating-point Fused Multiply-Add
Unit

He Jun
Shanghai Hi-Performance IC Design Centre

Shanghai, China
e-mail: joyhejun@126.com

Zhu Ying
Shanghai Hi-Performance IC Design Centre

Shanghai, China
e-mail: zhuying_1116@sina.com

Abstract—High precision and high performance floating-point
unit is an important research object of high performance
microprocessor design. According to the characteristic of
quadruple precision (QP) floating-point data format and
research on double precision floating-point fused multiply-add
(FMA) algorithms, a high performance QPFMA is designed
and realized, which supports multiple floating-point arithmetic
with a 7 cycles pipeline. By adopting dual adder and improving
on algorithm architecture, optimizing leading zero anticipation
and normalization shifter logic, the latency and hardware cost
is decreased. Based on 65nm technology, the synthesis results
show that the QPFMA can work at 1.2GHz, with the latency
decreased by 3 cycles, the gate number reduced by 18.77% and
the frequency increased about 11.63% comparing to current
QPFMA design, satisfying the requirements of high
performance processor design.

Keywords-floating-point arithmetic; fused multiply-add;
quadruple precision; high precision

I. INTRODUCTION

IEEE-754 floating-point double precision (64-bit) or
extended double precision (80-bit) arithmetic has been
implemented in modern processors, but which is not
sufficient for many scientific applications, such as climate
modeling, supernova simulations, coulomb N-body atomic
system simulations, electromagnetic scattering theory,
computational geometry and grid generation, computational
number theory and so on[1]. As floating-point data
presentation and arithmetic are not precise, the error is
increased gradually after many times of floating-point
arithmetic, resulting that the computation results are
imprecise and incredible.

In order to improve the precision and reoccurrence of
floating-point results and enhance the stability of numerical
algorithms, higher precision floating-point computation is
required. The IEEE 754-2008 floating-point standard [1]has
included quadruple precision (QP) floating-point data type
(binary128) to support high precision floating-point
computation. And it also takes the floating-point fused
multiply-add (FMA) operation as one of the basic operations.
So it has become one of the hot topics on how to design and
implement high precision and high performance floating-
point unit efficiently.

Base on the research on traditional double precision
floating-point FMA arithmetic algorithms, considering of the
characteristic of the new QP floating-point data type, a new

high performance QPFMA unit is designed and realized,
which supports floating-point multiplication, addition and
comparison operation besides four types of floating-point
FMA operations 1 (multiply-add, multiply-sub, negative
multiply-add and negative multiply-sub). The QPFMA
mainly comprises of a 113-bit Booth2 multiplier, a 341-bit
alignment shifter, a 342-bit dual adder, a 228-bit leading zero
anticipation (LZA) block, a 342-bit normalization shifter and
a rounding processing block, with 7-stage pipeline and 7-
cycle operation latency.

After optimization on the algorithm and detailed analysis
on the critical timing path, the register transistor level (RTL)
design of the QPFMA is synthesized using 65nm cell library,
which can work at 1.2GHz. Compared to the design of paper
[3], operation latency of the QPFMA is decreased by 3
cycles with the frequency increased by 11.63% and the gate
number is also reduced by 18.77%. As the results show that
the QPFMA can satisfy the requirements of high
performance processor design.

This paper proceeds as follow. Firstly, section II
introduces QP floating-point data format and related work on
QP floating-point arithmetic. Secondly, the design of
QPFMA is presented in section III, including the overall
architecture and key components. Thirdly, the
implementation of QPFMA is described in section IV.
Finally, the conclusion is provided.

II. RELATED WORK

A. QP Floating-Point Data Format

Figure 1. QP floating-point data format

As the IEEE 32-bit single precision (SP) and 64-bit
double precision (DP) data type, IEEE 754-2008 floating-
point standard [1]defines 128-bit QP floating-point data type
(binary128), consisting of three fields as the 1-bit sign (S),
the 15-bit exponent (E) and 112-bit fraction (T) (see Figure
1.). The bias of exponent is 16383. The fraction of
normalized data implies the integer bit as 1, which is not
need to presented, so the precision is 113-bit in fact (see
TABLE I.).

1 multiply-add: F=AB+C; multiply-sub: F=AB-C; negative

multiply-add: F=-AB+C; negative multiply-sub: F=-AB-C.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1749

TABLE I. IEEE 754-2008 FLOATING-POINT DATA TYPE

Floating-point Data Type SP DP QP
Sign (S) width 1 1 1
Exponent (E) width 8 11 15
Fraction (T)width 23 52 112
Precision (p) width 24 53 113
Data width 32 64 128
bias 127 1023 16383

B. Related Research on QP
According to the requirements of scientific computation

for high precision and high reliable floating-point arithmetic,
there are many researches on QP floating-point arithmetic in
academic field. The algorithms of QP floating-point
multiplication [4](with a 3-cycle pipeline), add [5](with a 3-
cycle pipeline) and division [6](with the operation latency of
59 cycles, no pipelined) have been studied, which all
supporting two operation modes: one QP or two parallel DP
floating-point operations. A multifunction floating-point
FMA with a 4-cycle pipeline was provided in paper [7],
which supports one QP/DP or two parallel DP/SP floating-
point FMA and one dot product operation. A similar design
of floating-point FMA was designed in paper [8], supporting
one QP or two parallel DP operations with a 3-cycle pipeline.
To decrease hardware overheads, the multiplier block in
paper [8]only supports DP multiplication and produces QP
multiplication by iterating one more time, so the throughput
of QP operation is half. A pure 5-cycle pipelined QPFMA
was implemented in paper [9], which can work at 202MHz
synthesized in SMIC 0.13um technology. Later, the design is
optimized by extending to 10 pipeline stages in paper [10],
which can work at 465MHz synthesized in SMIC 0.13um
technology and 1.075GHz synthesized in TSMC 65nm
technology. Besides, a QPFMA was implemented using
FPGA in paper [10], which can accelerate LU and MGS-QR
decomposing by 42 to 97 times while producing higher
precision results and dissipating lower energy.

As to our known, mainstream microprocessors support
QP floating-point arithmetic with limited hardware, mainly
with software emulation. Only IBM POWER6 processor
support QP floating-point addition in hardware [11].
Although QP floating-point data type and operations are
define in SPARC v9 instruction set, there is no SPARC
processor supports QP floating-point in hardware as to now.
There are some libraries on QP and higher precision floating-
point arithmetic, such as Intel Fortran [12], GMP, MP-
FR[13], QD (Quad-Double) [14]and so on. But the
performance of software emulation is limited. Compared to
DP floating-point, the test time of QP floating-point
LINPACK is increase by 35 times [1].

In brief, supporting QP floating-point arithmetic is one of
the important trends of floating-point unit, helping to
increase the precision of floating-point arithmetic and
improve the performance of some important scientific
applications. Current academic study on QP floating-point
arithmetic put emphasis on theory exploration, far from
industry implementation. Considering of hardware and
latency, the implementation QP floating-point arithmetic is
not attractive for big area and long latency. So the key issue

is to decrease the hardware overhead and operation latency
of QPFMA.

III. HIGH PERFORMANCE QPFMA DESIGN

A. Overall Architecture
Floating-point FMA algorithm is realized in IBM

RS/6000 [15] for the first time, which has been looked as the
classic algorithm of FMA, made up of following steps
(mainly the fraction part):

1) Fractions multiplication: Multiplicand and multiplier is
multiplied, generating carry-save form’s product (Carry,
Sum).

2) Addend alignment: Paralleled with multiplication,
according to the exponent difference of addend and product,
the addend is shifted by an alignment shifter to make the
exponents equal.

3) Sum of product and addend: Firstly add the aligned
addend and product using a 3:2 carry save adder (CSA) to
get a new carry-save form’s product (Carry`, Sum`), and then
add them to get the sum using a carry propagated adder
(CPA), probably needing to complement the sum if negative
to get a positive result.

4) Result normalization: While sum of product and sum,
the leading one is predicted by a LZA, and then the result is
shifted by a normalization shifter to get normalized result.

5) Result rounding: Based on the IEEE rounding mode,
the normalized result is rounded and the last result is
obtained, may needing another renormalization if the last
result greater than or equal to 2.0.

On the basis of classic FMA algorithm, there are many
studies to reduce the latency of FMA operation, which can
be classified into two types: one is the algorithm optimized
by normalization in advance and combined addition of CPA
and result rounding [16], the other is dual-path or multi-path
algorithm [17][18][19]. Such improved algorithms can
reduce the FMA latency, but at the cost of increasing
hardware area and complex.

To reduce the hardware cost and latency, the QPFMA
algorithm in this article is optimized on the basis of classic
FMA algorithm, including the application of dual adder to
avoiding the complement of negative result and improved
LZA logic with decreased data width and levels of
normalization shifter.

The QPFMA unit is mainly comprised of a 113-bit
multiplier, a 341-bit alignment shifter, a 342-bit dual adder, a
228-bit LZA, a 342-bit normalization shifter and a rounding
block with 7 pipeline stages (as shown in Figure 2. , the
dash-dotted lines ST0~6 mean the flip-flops of the pipeline
stages).

The function of every stage of the QPFMA is described
as following:

ST0: Operands are unpacked and selected based on
operation types at first, while determining the effective
operation is subtraction or addition and whether need to
invert the last result’s sign. And the special operands, such as
zero, not-a-number, de-normalized number and infinity, are
all detected and the input exception result is generated.
According to the exponent of each operand (EA、EB、EC),

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1750

the exponent difference (d)2and the alignment shifter count
(ASC)3 are calculated out, and then make sure if d greater
than one or not and get the temporary result exponent (Etmp).
The multiplier finishes Booth recoding and produces 57 part
products, and then the part products is compressed by first
level 4:2 CSAs.

A B

Bit inverted

Alignment shifter
(341-bit)

C

sub

3:2 CSA (226-bit)

Sum Carry

Dual adder
(342-bit)

F=AB+C

Booth
recoding

CSA tree
(5-level of 4:2 CSA)

Multiplier

Carry`Sum`

Normalization shifter
(342-bit)

Rounding process
(113-bit)

113

ASC

Exponent
difference

Etmp

EA EB EC

d>1

9

226 226226

115

MSB

LSB

st

st

{1'b0,sub}

342

8

LZA
(228-bit)

ST0

ST1

ST2

ST3

ST4

ST5

ST6

113
Round bit

& Sticky bit

2

114'b0

113 113

342

342

Figure 2. QPFMA Overall Architecture

ST1: The addend is shifted in line with ASC and the
sticky bit for rounding is also produced. The multiplier
continues to compress the part products using the 2nd, 3rd and
4th level 4:2 CSAs.

ST2: The multiplier accomplishes the last level part
product compression and produce the carry-save product
(Carry, Sum). Then the carry-save product and aligned
addend is compressed by a 3:2 CSA, generating the new
carry-save sum (Carry`, Sum`). Finally, the carry-save sum is
added by a dual adder while predicting the leading one
position of the last result by LZA (only finish partly).

ST3: The rest of dual adder and LZA accomplished
paralleled, and the preliminary result is obtained with the
normalization shifter count. Then the preliminary result is
shifted for the first level.

ST4: The remaining part of normalization shifter is
finished and the normalized result is got while adjusting the
exponent accordingly.

ST5: As there is a few errors in LZA, the normalized
result need to be corrected and then the result is rounded
based on IEEE rounding mode.

ST6: The rounded result is detected to determine if
overflow or underflow occurs or not. And the last FMA
result is selected from the rounded result and former
generated input exception result in ST0.

2 d=EC-EAB=EC-bias-(EA-bias+EB-bias)=EC-EA-EB+bias.

3 ASC=EAB-(EC-116)=116-(EC-EAB)= 116-d.

The input exception processing block is not shown in
Figure 2, which detecting input operand exceptions and
generating exception result, for example, invalid operation
and infinity operation result.

In the following the key components is described in
detailed, including the 113-bit Booth2 Multiplier, alignment
shifter, dual adder, LZA and normalization shifter.

B. Key Components
1) 113-bit Booth2 Multiplier

Figure 3. 113-bit Booth2 Multiplier

The 113-bit multiplier is made up of two parts: Booth2
recoding and part products compression tree and divided into
3 pipeline stages ST0~3 (see Figure 3.). After Booth
recoding, 57 part products are generated firstly, and then
compressed into 29 part products by 14 4:2 CSAs of the first
level. Secondly the 29 part products are compressed into 15
part products by 7 4:2 CSAs of the second level and then into
8 part products by 3 4:2 CSAs and a 3:2 CSA of the third
level. Thirdly the 8 part products are compressed into 4 part
products by 2 4:2 CSAs of the forth level. Finally the 4 part
products are compressed into 2 part products (Carry, Sum)
by the last 4:2 CSA.

2) Alignment Shifter

Figure 4. QPFMA Alignment

For the product of AB is acquired only after the
multiplication finished while the addend C is ready at first,
the alignment shifter only shift the addend C while AB is
fixed. Assuming that the addend C is shifted left for 116 bits,
then the addend C only need to shifted right according to
ASC(see Figure 3.). If ASC≤0 C need not to be shifted, else
it is shifted ASC bits right. But when ASC>341, meaning
that AB is far greater than C and C is only need to taken into
account to form sticky bit (st), it is shifted right for
maximum 341 bits. So ASC is in the range of [0, 341].

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1751

The sticky bit (st) is generated as following: If the
effective operation is addition, the st bit is formed by
“OR”ing all the bits of C shifted out beyond 341. While if
the effective operation is subtraction, the st bit is formed by
“AND”ing all the bits of C shifted out beyond 341 after C is
bit inverted. After the st bit is generated, it is jointed to the
least significant bit (LSB) of the Sum` output from the 3:2
CSA while a bit of “sub” (sub=1 if effective operation is
subtraction) jointed to the LSB of the Carry` output from the
3:2 CSA. Then both the correct sticky bit and complement of
the addend C can be realized when Sum` and Carry` are
added.

The alignment shifter consists of 4 levels of 4:1 multiplex
and 1 level of 2:1 multiplex with the data width of 341 bits
and alignment count in the rage of [0, 341]. It is not detailed
more for conciseness.

3) Dual Adder
A[341:228]+B[341:228] A[227:114]+B[227:114] A[113:0]+B[113:0]

000

1A[341:228]+B[341:228] A[227:114]+B[227:114] 1 A[113:0]+B[113:0] 1

MUX

MUX

S1[113:0] S0[113:0]

MUX

MUX

MUX

MUX

MUX

Cout00

Cout01

Cout10

Cout11

Cout20

Cout21

Cout S1[227:114] S0[227:114]S1[341:228] S0[341:228]

Cout10*

Cout11*

Figure 5. 342-bit Dual Adder

The input A and B of the dual adder are the output
(Carry`, Sum`) of 3:2CSA, which are added to produce the
sum (S0 and S1) and carry out (Cout). Considering the long
latency of 342-bit adder, the dual adder is designed
incorporated both the idea of end-around-carry adder and
carry select adder. It is divided into 3 segments, including
two parallel 114-bit adders with the same addends and carry
in as 0 and 1 in each segment (see Figure 5.).

First, the six 114-bit adders calculate in parallel and get
each carry out (Cout). Then according to the carry out
(Cout00 and Cout01) of the low segment, the sum (S0 and
S1) and carry out (Cout10* and Cout11*) of the middle
segment is determined. And then the sum (S0 and S1) and
carry out (Cout) of the high segment is determined according
to the carry out Cout10* and Cout11*). Finally, S0 is bit
inverted to get the final result if the effective operation is
subtraction or S1 is the final result if not.

The dual adder can calculate out the absolute of (Carry`,
Sum`) directly, avoiding the complement of negative result
and reducing the latency of a 342-bit adder. The latency of
the dual adder is the latency of a 114-bit adder and a 2:1
multiplex.

4) LZA and Normalization Shifter
After analysis on the FMA algorithm, it is concluded that

the leading one’s position in fraction must be in the least
significant 228-bit of the result and the most significant 114-
bit must be all zeroes if exponent difference no larger than
one (i.e. d≤1), while the leading one’s position in fraction
must be in the most significant 228-bit of the result if d>1.
So LZA is carried out on the least significant 228-bit if d≤1
while on the most significant 228-bit if not, resulting the data
width of LZA decrease from 342 bits down to 228 bits.

Accordingly, there are 3 cases for the temporary result
exponent (Etmp). 1) When d≤1 (i.e. ASC≥115), EAB+2 is
taken as the temporary result exponent (Etmp). 2) When d>1
and ASC≤0, Etmp equals to EC. 3) In the rest case (i.e. d>1
and 0<ASC<115), Etmp equals to EC+ASC.

Normalization shifter normalizes the fraction by shifting
left according to the result of LZA, making the MSB of
result fraction be one. On the base of former analysis, the
most significant 114 bits must be all zeroes if d≤1, so the
result is left shifted 114 bits first and then is left shifted
according to the result of LZA. If d>1, the leading one of
fraction must be in the most significant 228-bit of the result,
and the result is only need to be left shifted according to the
result of LZA directly. Finally, the shifted result probably
needs to be left shifted one more bit for the error of LZA.

All the processing described above fits for the case of
effective subtraction. While in the case of effective addition,
it is processed as following when the result is normalized:

1) If d≤1, Etmp=EAB+2, the result is left shifted 114 bits
for the most significant 114 bits must be all zeroes, and then
the result is not shifted any more. In this case, the most
significant 2 bits of shifted result maybe zero, meaning that
error of 2 bits exist, which need to be corrected later.

2) If 1<d<116 (i.e. 0<ASC<115), Etmp=EAB+ASC, the
result is left shifted ASC-1 bits. There is error of 1-bit in this
case, needing to be corrected later.

3) If d≥116 (i.e. ASC≤0), Etmp=EC, the result is need not
to be left shifted and no error exists.

So in the case of effective addition, the result is left
shifted only when 0<ASC<115, and there may exist error of
2-bit needing to be corrected later.

To sum up, the normalization shifter divides into two
parts: one part is a 114-bit shifter first and the other is a
normal left shifter, shifting result according to the result of
LZA result in case of effective subtraction while shifting
result according to ASC in case of effective addition. And
there exist error of 2-bit at most, which can be corrected by
detecting the most significant 2-bit of the normalized result
to determine whether they are zero or not. Using the LZA
and normalization shifter designed here, the data width of
LZA logic reduces 114 bits and the normalization shifter
avoids one level of multiplex, helping to reduce hardware
overhead and operation latency.

IV. HIGH PERFORMANCE QPFMA IMPLEMENTATION

A. Logic Synthesis and Estimation
Taking use of the 65nm cell library, the RTL Verilog

code of the QPFMA is synthesized into gate netlist using the
design compiler EDA tool of Synopsys. As the synthesis
result shows, the QPFMA is balanced pipelined with the
cycle time of 0.74ns and the critical timing path lies in the
second pipeline stage. Considering the overhead of timing
from the clock port (CK) to the output port (Q) and the skew
of clock, the QPFMA can work at 1.2GHz frequency,
satisfying the demand of high performance microprocessor.

The QPFMA designed in paper [3]has a 10-stage pipeline
with the frequency at 1.075GHz in TSMC 65nm technology.
Compared to it, the QPFMA in this paper reduces the latency

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1752

by 3 cycles, decrease the gate number by 18.77% and
increase the frequency by 11.63% or so (see TABLE II.).

TABLE II. QPFMA SYNTHESIS RESULTS

Design Pipeline
stages

Frequency
(GHz)

Gate
number

Area
(μm2)

QPFMA in
paper[3]

10 1.075 229000 unknown

QPFMA in
this paper

7 1.2 186007 334811.41

DPFMA in
paper[3]

8 1.086 93830 unknown

DPFMA in
this paper

6 1.2 83084 149550.60

Moreover, the QPFMA only increase one pipeline stage
when compared with the former designed double precision
FMA (DPFMA) by us. The area of QPFMA is 2.24 times of
the area of the DPFMA when both work at 1.2GHz. As
described in paper [3], the area of the QPFMA designed in it
is 2.44 times of the area of the DPFMA in the same
technology and at similar frequency.

V. CONCLUSION

In conclusion, a high performance QPFMA unit is
designed and synthesized in this paper, and it is compared
with other QPFMA. The main contribution of this paper is as
following: 1) A new QPFMA with 7-stage pipeline is put
forward, which can work at 1.2GHz in 65nm technology,
satisfying the requirement of high performance processor; 2)
By the application of dual adder, avoiding the complement of
negative result, and the optimization LZA logic, reducing the
data width of LZA and the level of normalization shifter, the
hardware overhead and operation latency of the QPFMA is
decrease both. The QPFMA will be optimized further by
improvement in algorithm to decrease area and latency more.

REFERENCE
[1] Bailey D H. High-precision floating-point arithmetic in scientific

computation. Computing in Science and Engineering, 2005, 7(3):54-
61.

[2] IEEE Computer Society. IEEE Standard for Floating-Point
Arithmetic. IEEE Standard 754-2008, 3 Park Avenue New York, NY
10016-5997, USA 29 August 2008.

[3] Li Tie-jun, Li Qiu-liang, Xu Wei-xia, A High Performance Pipeline
Architecture of 128bit Floating-point Fused Multiply-add Unit,
JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE
TECHNOLOGY 2010, 32(2):56-60.

[4] A. Akkas and M.J. Schulte. Dual-Mode Floating-Point Multiplier
Architectures with Parallel Operations. Journal of Systems
Architecture, 52:549-562, 2006.

[5] A. Akkas. Dual-Mode Quadruple Precision Floating Point Adder. In
9th Euromicro Conference on Digital System Design, pages 211-220,
2006.

[6] A. Akkas. A Dual-Mode Quadruple Precision Floating-Point Divider.
Fortieth Asilomar Conference on Signals, Systems and Computers,
pages1697-1701,2006.

[7] Mustafa Gok，Metin Mete Ozbilen. Multi-functional floating-point
MAF designs with dot product support, Microelectronics Journal,
2008, 39(1):30-43.

[8] Libo Huang, Sheng Ma, Li Shen, Zhiying Wang, Nong Xiao, Low-
Cost Binary128 Floating-Point FMA Unit Design with SIMD Support,
IEEE TRANSACTIONS ON COMPUTERS, VOL.61, NO.5, pp745-
751, MAY 2012.

[9] Zhang Feng, Li Tie-jun, Xu Wei-xia, Research and Realization of a
128-Bit Multiply-Add-Fused Unit, COMPUTER ENGINEERING
AND SCIENCE, 2009, 31(2):93-103.

[10] Lei Yuan-wu, Dou Yong, Guo Song, High Precision Scientific
Computation Accumulator on FPGA, Chinese Journal of Computers,
2012, 35(1):112-122.

[11] Xiao Yan Yu; Yiu-Hing Chan; Curran, B.; Schwarz, E.; Kelly, M.;
Fleischer, B. A 5GHz+ 128-bit Binary Floating-Point Adder for the
POWER6 Processor, Proceedings of the 32nd European Solid-State
Circuits Conference, pages 166-169, 2006.

[12] Intel Company, Intel Compilers and Libraries, http://soft-
ware.intel.com/en-us/articles/intel-cimpilers/. 2012/12/24.

[13] Fousse L, Hanrot G, Lefevre V et al. Mpfr: A multiple-precision
binary floating-point library with correct rounding. ACM
Transactions on Mathematical Software (TOMS), 2007,33(2):1-14.

[14] Hida Y, Li X S, Bailey D H. Quad-double arithmetic: Algorithms,
implementation, and application. Lawrence Berkeley National
Laboratory, Berkeley, CA, Report LBL-46996,2000.

[15] R. K. Montoye, et. al., Design of the IBM RISC System/6000
Floating-Point Execution Unit, IBM Journal of Research and
Development, Vol. 34, pp. 61-62, 1990.

[16] T. Lang and J. Bruguera, Floating-Point Fused Multiply-Add with
Reduced Latency, Internal Report, Dept. of Electronic and Computer
Engineering University of Santiago de Conpostela (Spain), Jan.
2002(available at www.ac.usc.es).

[17] Bruguera, J.D.; Lang, T. Floating-point fused mulipy-add: reduced
latency for floating-point addition, Proc. 17th IEEE Symp. Computer
Arithmetic, Hyannis, 27-29 June, 2005.

[18] Seidel, P.M. Multiple path IEEE floating-point fused multiply-add,
Proc. 46th Int. IEEE Midwest Symp. Circuits and Systems (MWS-
CAS), 2003.

[19] Eric Quinnell, Floating-Point Fused Multiply-Add Architectures. Phd
thesis,University of Texas at Austin, May 2007.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1753

