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Abstract—High precision and high performance floating-point 
unit is an important research object of high performance 
microprocessor design. According to the characteristic of 
quadruple precision (QP) floating-point data format and 
research on double precision floating-point fused multiply-add 
(FMA) algorithms, a high performance QPFMA is designed 
and realized, which supports multiple floating-point arithmetic 
with a 7 cycles pipeline. By adopting dual adder and improving 
on algorithm architecture, optimizing leading zero anticipation 
and normalization shifter logic, the latency and hardware cost 
is decreased. Based on 65nm technology, the synthesis results 
show that the QPFMA can work at 1.2GHz, with the latency 
decreased by 3 cycles, the gate number reduced by 18.77% and 
the frequency increased about 11.63% comparing to current 
QPFMA design, satisfying the requirements of high 
performance processor design. 

Keywords-floating-point arithmetic; fused multiply-add; 
quadruple precision; high precision 

I.  INTRODUCTION  

IEEE-754 floating-point double precision (64-bit) or 
extended double precision (80-bit) arithmetic has been 
implemented in modern processors, but which is not 
sufficient for many scientific applications, such as climate 
modeling, supernova simulations, coulomb N-body atomic 
system simulations, electromagnetic scattering theory, 
computational geometry and grid generation, computational 
number theory and so on[1]. As floating-point data 
presentation and arithmetic are not precise, the error is 
increased gradually after many times of floating-point 
arithmetic, resulting that the computation results are 
imprecise and incredible. 

In order to improve the precision and reoccurrence of 
floating-point results and enhance the stability of numerical 
algorithms, higher precision floating-point computation is 
required. The IEEE 754-2008 floating-point standard [1]has 
included quadruple precision (QP) floating-point data type 
(binary128) to support high precision floating-point 
computation. And it also takes the floating-point fused 
multiply-add (FMA) operation as one of the basic operations. 
So it has become one of the hot topics on how to design and 
implement high precision and high performance floating-
point unit efficiently. 

Base on the research on traditional double precision 
floating-point FMA arithmetic algorithms, considering of the 
characteristic of the new QP floating-point data type, a new 

high performance QPFMA unit is designed and realized, 
which supports floating-point multiplication, addition and 
comparison operation besides four types of floating-point 
FMA operations 1  (multiply-add, multiply-sub, negative 
multiply-add and negative multiply-sub). The QPFMA 
mainly comprises of a 113-bit Booth2 multiplier, a 341-bit 
alignment shifter, a 342-bit dual adder, a 228-bit leading zero 
anticipation (LZA) block, a 342-bit normalization shifter and 
a rounding processing block, with 7-stage pipeline and 7-
cycle operation latency. 

After optimization on the algorithm and detailed analysis 
on the critical timing path, the register transistor level (RTL) 
design of the QPFMA is synthesized using 65nm cell library, 
which can work at 1.2GHz. Compared to the design of paper 
[3], operation latency of the QPFMA is decreased by 3 
cycles with the frequency increased by 11.63% and the gate 
number is also reduced by 18.77%. As the results show that 
the QPFMA can satisfy the requirements of high 
performance processor design. 

This paper proceeds as follow. Firstly, section II 
introduces QP floating-point data format and related work on 
QP floating-point arithmetic. Secondly, the design of 
QPFMA is presented in section III, including the overall 
architecture and key components. Thirdly, the 
implementation of QPFMA is described in section IV. 
Finally, the conclusion is provided. 

II. RELATED WORK 

A. QP Floating-Point Data Format 

 
Figure 1.  QP floating-point data format 

As the IEEE 32-bit single precision (SP) and 64-bit 
double precision (DP) data type, IEEE 754-2008 floating-
point standard [1]defines 128-bit QP floating-point data type 
(binary128), consisting of three fields as the 1-bit sign (S), 
the 15-bit exponent (E) and 112-bit fraction (T) (see Figure 
1. ). The bias of exponent is 16383. The fraction of 
normalized data implies the integer bit as 1, which is not 
need to presented, so the precision is 113-bit in fact (see 
TABLE I. ). 

                                                           
1  multiply-add: F=AB+C; multiply-sub: F=AB-C; negative 

multiply-add: F=-AB+C; negative multiply-sub: F=-AB-C. 
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TABLE I.  IEEE 754-2008 FLOATING-POINT DATA TYPE  

Floating-point Data Type SP DP QP 
Sign (S) width  1 1 1 
Exponent (E) width 8 11 15 
Fraction (T)width 23 52 112 
Precision (p) width 24 53 113 
Data width 32 64 128 
bias 127 1023 16383

B. Related Research on QP 
According to the requirements of scientific computation 

for high precision and high reliable floating-point arithmetic, 
there are many researches on QP floating-point arithmetic in 
academic field. The algorithms of QP floating-point 
multiplication [4](with a 3-cycle pipeline), add [5](with a 3-
cycle pipeline) and division [6](with the operation latency of 
59 cycles, no pipelined) have been studied, which all 
supporting two operation modes: one QP or two parallel DP 
floating-point operations. A multifunction floating-point 
FMA with a 4-cycle pipeline was provided in paper [7], 
which supports one QP/DP or two parallel DP/SP floating-
point FMA and one dot product operation. A similar design 
of floating-point FMA was designed in paper [8], supporting 
one QP or two parallel DP operations with a 3-cycle pipeline. 
To decrease hardware overheads, the multiplier block in 
paper [8]only supports DP multiplication and produces QP 
multiplication by iterating one more time, so the throughput 
of QP operation is half. A pure 5-cycle pipelined QPFMA 
was implemented in paper [9], which can work at 202MHz 
synthesized in SMIC 0.13um technology. Later, the design is 
optimized by extending to 10 pipeline stages in paper [10], 
which can work at 465MHz synthesized in SMIC 0.13um 
technology and 1.075GHz synthesized in TSMC 65nm 
technology. Besides, a QPFMA was implemented using 
FPGA in paper [10], which can accelerate LU and MGS-QR 
decomposing by 42 to 97 times while producing higher 
precision results and dissipating lower energy. 

As to our known, mainstream microprocessors support 
QP floating-point arithmetic with limited hardware, mainly 
with software emulation. Only IBM POWER6 processor 
support QP floating-point addition in hardware [11]. 
Although QP floating-point data type and operations are 
define in SPARC v9 instruction set, there is no SPARC 
processor supports QP floating-point in hardware as to now. 
There are some libraries on QP and higher precision floating-
point arithmetic, such as Intel Fortran [12], GMP, MP-
FR[13], QD (Quad-Double) [14]and so on. But the 
performance of software emulation is limited. Compared to 
DP floating-point, the test time of QP floating-point 
LINPACK is increase by 35 times [1]. 

In brief, supporting QP floating-point arithmetic is one of 
the important trends of floating-point unit, helping to 
increase the precision of floating-point arithmetic and 
improve the performance of some important scientific 
applications. Current academic study on QP floating-point 
arithmetic put emphasis on theory exploration, far from 
industry implementation. Considering of hardware and 
latency, the implementation QP floating-point arithmetic is 
not attractive for big area and long latency. So the key issue 

is to decrease the hardware overhead and operation latency 
of QPFMA. 

III. HIGH PERFORMANCE QPFMA DESIGN 

A. Overall Architecture 
Floating-point FMA algorithm is realized in IBM 

RS/6000 [15] for the first time, which has been looked as the 
classic algorithm of FMA, made up of following steps 
(mainly the fraction part): 

1) Fractions multiplication: Multiplicand and multiplier is 
multiplied, generating carry-save form’s product (Carry, 
Sum). 

2) Addend alignment: Paralleled with multiplication, 
according to the exponent difference of addend and product, 
the addend is shifted by an alignment shifter to make the 
exponents equal. 

3) Sum of product and addend: Firstly add the aligned 
addend and product using a 3:2 carry save adder (CSA) to 
get a new carry-save form’s product (Carry`, Sum`), and then 
add them to get the sum using a carry propagated adder 
(CPA), probably needing to complement the sum if negative 
to get a positive result. 

4) Result normalization: While sum of product and sum, 
the leading one is predicted by a LZA, and then the result is 
shifted by a normalization shifter to get normalized result. 

5) Result rounding: Based on the IEEE rounding mode, 
the normalized result is rounded and the last result is 
obtained, may needing another renormalization if the last 
result greater than or equal to 2.0. 

On the basis of classic FMA algorithm, there are many 
studies to reduce the latency of FMA operation, which can 
be classified into two types: one is the algorithm optimized 
by normalization in advance and combined addition of CPA 
and result rounding [16], the other is dual-path or multi-path 
algorithm [17][18][19]. Such improved algorithms can 
reduce the FMA latency, but at the cost of increasing 
hardware area and complex. 

To reduce the hardware cost and latency, the QPFMA 
algorithm in this article is optimized on the basis of classic 
FMA algorithm, including the application of dual adder to 
avoiding the complement of negative result and improved 
LZA logic with decreased data width and levels of 
normalization shifter. 

The QPFMA unit is mainly comprised of a 113-bit 
multiplier, a 341-bit alignment shifter, a 342-bit dual adder, a 
228-bit LZA, a 342-bit normalization shifter and a rounding 
block with 7 pipeline stages (as shown in Figure 2. , the 
dash-dotted lines ST0~6 mean the flip-flops of the pipeline 
stages ). 

The function of every stage of the QPFMA is described 
as following: 

ST0: Operands are unpacked and selected based on 
operation types at first, while determining the effective 
operation is subtraction or addition and whether need to 
invert the last result’s sign. And the special operands, such as 
zero, not-a-number, de-normalized number and infinity, are 
all detected and the input exception result is generated. 
According to the exponent of each operand (EA、EB、EC), 
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the exponent difference (d)2and the alignment shifter count 
(ASC)3 are calculated out, and then make sure if d greater 
than one or not and get the temporary result exponent (Etmp). 
The multiplier finishes Booth recoding and produces 57 part 
products, and then the part products is compressed by first 
level 4:2 CSAs. 

A                         B
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Figure 2.  QPFMA Overall Architecture 

ST1: The addend is shifted in line with ASC and the 
sticky bit for rounding is also produced. The multiplier 
continues to compress the part products using the 2nd, 3rd and 
4th level 4:2 CSAs. 

ST2: The multiplier accomplishes the last level part 
product compression and produce the carry-save product 
(Carry, Sum). Then the carry-save product and aligned 
addend is compressed by a 3:2 CSA, generating the new 
carry-save sum (Carry`, Sum`). Finally, the carry-save sum is 
added by a dual adder while predicting the leading one 
position of the last result by LZA (only finish partly). 

ST3: The rest of dual adder and LZA accomplished 
paralleled, and the preliminary result is obtained with the 
normalization shifter count. Then the preliminary result is 
shifted for the first level. 

ST4: The remaining part of normalization shifter is 
finished and the normalized result is got while adjusting the 
exponent accordingly. 

ST5: As there is a few errors in LZA, the normalized 
result need to be corrected and then the result is rounded 
based on IEEE rounding mode. 

ST6: The rounded result is detected to determine if 
overflow or underflow occurs or not. And the last FMA 
result is selected from the rounded result and former 
generated input exception result in ST0. 

                                                           
2  d=EC-EAB=EC-bias-(EA-bias+EB-bias)=EC-EA-EB+bias. 

3  ASC=EAB-(EC-116)=116-(EC-EAB)= 116-d. 

The input exception processing block is not shown in 
Figure 2, which detecting input operand exceptions and 
generating exception result, for example, invalid operation 
and infinity operation result. 

In the following the key components is described in 
detailed, including the 113-bit Booth2 Multiplier, alignment 
shifter, dual adder, LZA and normalization shifter. 

B. Key Components 
1) 113-bit Booth2 Multiplier 

 
Figure 3.  113-bit Booth2 Multiplier 

The 113-bit multiplier is made up of two parts: Booth2 
recoding and part products compression tree and divided into 
3 pipeline stages ST0~3 (see Figure 3. ). After Booth 
recoding, 57 part products are generated firstly, and then 
compressed into 29 part products by 14 4:2 CSAs of the first 
level. Secondly the 29 part products are compressed into 15 
part products by 7 4:2 CSAs of the second level and then into 
8 part products by 3 4:2 CSAs and a 3:2 CSA of the third 
level. Thirdly the 8 part products are compressed into 4 part 
products by 2 4:2 CSAs of the forth level. Finally the 4 part 
products are compressed into 2 part products (Carry, Sum) 
by the last 4:2 CSA.  

2) Alignment Shifter 

 
Figure 4.  QPFMA Alignment 

For the product of AB is acquired only after the 
multiplication finished while the addend C is ready at first, 
the alignment shifter only shift the addend C while AB is 
fixed. Assuming that the addend C is shifted left for 116 bits, 
then the addend C only need to shifted right according to 
ASC(see Figure 3. ). If ASC≤0 C need not to be shifted, else 
it is shifted ASC bits right. But when ASC>341, meaning 
that AB is far greater than C and C is only need to taken into 
account to form sticky bit (st), it is shifted right for 
maximum 341 bits. So ASC is in the range of [0, 341]. 

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France. 
© the authors 

1751



The sticky bit (st) is generated as following: If the 
effective operation is addition, the st bit is formed by 
“OR”ing all the bits of C shifted out beyond 341. While if 
the effective operation is subtraction, the st bit is formed by 
“AND”ing all the bits of C shifted out beyond 341 after C is 
bit inverted. After the st bit is generated, it is jointed to the 
least significant bit (LSB) of the Sum` output from the 3:2 
CSA while a bit of “sub” (sub=1 if effective operation is 
subtraction) jointed to the LSB of the Carry` output from the 
3:2 CSA. Then both the correct sticky bit and complement of 
the addend C can be realized when Sum` and Carry` are 
added. 

The alignment shifter consists of 4 levels of 4:1 multiplex 
and 1 level of 2:1 multiplex with the data width of 341 bits 
and alignment count in the rage of [0, 341]. It is not detailed 
more for conciseness. 

3) Dual Adder 
A[341:228]+B[341:228] A[227:114]+B[227:114] A[113:0]+B[113:0]

000

1A[341:228]+B[341:228] A[227:114]+B[227:114] 1 A[113:0]+B[113:0] 1

MUX

MUX

S1[113:0] S0[113:0]

MUX

MUX

MUX

MUX

MUX

Cout00

Cout01

Cout10

Cout11

Cout20

Cout21

Cout S1[227:114] S0[227:114]S1[341:228] S0[341:228]

Cout10*

Cout11*

 
Figure 5.  342-bit Dual Adder 

The input A and B of the dual adder are the output 
(Carry`, Sum`) of 3:2CSA, which are added to produce the 
sum (S0 and S1) and carry out (Cout). Considering the long 
latency of 342-bit adder, the dual adder is designed 
incorporated both the idea of end-around-carry adder and 
carry select adder. It is divided into 3 segments, including 
two parallel 114-bit adders with the same addends and carry 
in as 0 and 1 in each segment (see Figure 5. ). 

First, the six 114-bit adders calculate in parallel and get 
each carry out (Cout). Then according to the carry out 
(Cout00 and Cout01) of the low segment, the sum (S0 and 
S1) and carry out (Cout10* and Cout11*) of the middle 
segment is determined. And then the sum (S0 and S1) and 
carry out (Cout) of the high segment is determined according 
to the carry out Cout10* and Cout11*). Finally, S0 is bit 
inverted to get the final result if the effective operation is 
subtraction or S1 is the final result if not. 

The dual adder can calculate out the absolute of (Carry`, 
Sum`) directly, avoiding the complement of negative result 
and reducing the latency of a 342-bit adder. The latency of 
the dual adder is the latency of a 114-bit adder and a 2:1 
multiplex. 

4) LZA and Normalization Shifter 
After analysis on the FMA algorithm, it is concluded that 

the leading one’s position in fraction must be in the least 
significant 228-bit of the result and the most significant 114-
bit must be all zeroes if exponent difference no larger than 
one (i.e. d≤1), while the leading one’s position in fraction 
must be in the most significant 228-bit of the result if d>1. 
So LZA is carried out on the least significant 228-bit if d≤1 
while on the most significant 228-bit if not, resulting the data 
width of LZA decrease from 342 bits down to 228 bits. 

Accordingly, there are 3 cases for the temporary result 
exponent (Etmp). 1) When d≤1 (i.e. ASC≥115), EAB+2 is 
taken as the temporary result exponent (Etmp). 2) When d>1 
and ASC≤0, Etmp equals to EC. 3) In the rest case (i.e. d>1 
and 0<ASC<115), Etmp equals to EC+ASC. 

Normalization shifter normalizes the fraction by shifting 
left according to the result of LZA, making the MSB of 
result fraction be one. On the base of former analysis, the 
most significant 114 bits must be all zeroes if d≤1, so the 
result is left shifted 114 bits first and then is left shifted 
according to the result of LZA. If d>1, the leading one of 
fraction must be in the most significant 228-bit of the result, 
and the result is only need to be left shifted according to the 
result of LZA directly. Finally, the shifted result probably 
needs to be left shifted one more bit for the error of LZA. 

All the processing described above fits for the case of 
effective subtraction. While in the case of effective addition, 
it is processed as following when the result is normalized: 

1) If d≤1, Etmp=EAB+2, the result is left shifted 114 bits 
for the most significant 114 bits must be all zeroes, and then 
the result is not shifted any more. In this case, the most 
significant 2 bits of shifted result maybe zero, meaning that 
error of 2 bits exist, which need to be corrected later. 

2) If 1<d<116 (i.e. 0<ASC<115), Etmp=EAB+ASC, the 
result is left shifted ASC-1 bits. There is error of 1-bit in this 
case, needing to be corrected later. 

3) If d≥116 (i.e. ASC≤0), Etmp=EC, the result is need not 
to be left shifted and no error exists. 

So in the case of effective addition, the result is left 
shifted only when 0<ASC<115, and there may exist error of 
2-bit needing to be corrected later. 

To sum up, the normalization shifter divides into two 
parts: one part is a 114-bit shifter first and the other is a 
normal left shifter, shifting result according to the result of 
LZA result in case of effective subtraction while shifting 
result according to ASC in case of effective addition. And 
there exist error of 2-bit at most, which can be corrected by 
detecting the most significant 2-bit of the normalized result 
to determine whether they are zero or not. Using the LZA 
and normalization shifter designed here, the data width of 
LZA logic reduces 114 bits and the normalization shifter 
avoids one level of multiplex, helping to reduce hardware 
overhead and operation latency. 

IV. HIGH PERFORMANCE QPFMA IMPLEMENTATION 

A. Logic Synthesis and Estimation 
Taking use of the 65nm cell library, the RTL Verilog 

code of the QPFMA is synthesized into gate netlist using the 
design compiler EDA tool of Synopsys. As the synthesis 
result shows, the QPFMA is balanced pipelined with the 
cycle time of 0.74ns and the critical timing path lies in the 
second pipeline stage. Considering the overhead of timing 
from the clock port (CK) to the output port (Q) and the skew 
of clock, the QPFMA can work at 1.2GHz frequency, 
satisfying the demand of high performance microprocessor. 

The QPFMA designed in paper [3]has a 10-stage pipeline 
with the frequency at 1.075GHz in TSMC 65nm technology. 
Compared to it, the QPFMA in this paper reduces the latency 
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by 3 cycles, decrease the gate number by 18.77% and 
increase the frequency by 11.63% or so (see TABLE II. ). 

TABLE II.  QPFMA SYNTHESIS RESULTS 

Design Pipeline 
stages 

Frequency 
(GHz) 

Gate 
number 

Area 
(μm2)

QPFMA  in 
paper[3] 

10 1.075 229000 unknown

QPFMA in 
this paper 

7 1.2 186007 334811.41

DPFMA  in 
paper[3] 

8 1.086 93830 unknown

DPFMA in 
this paper 

6 1.2 83084 149550.60

Moreover, the QPFMA only increase one pipeline stage 
when compared with the former designed double precision 
FMA (DPFMA) by us. The area of QPFMA is 2.24 times of 
the area of the DPFMA when both work at 1.2GHz. As 
described in paper [3], the area of the QPFMA designed in it 
is 2.44 times of the area of the DPFMA in the same 
technology and at similar frequency. 

V. CONCLUSION 

In conclusion, a high performance QPFMA unit is 
designed and synthesized in this paper, and it is compared 
with other QPFMA. The main contribution of this paper is as 
following: 1) A new QPFMA with 7-stage pipeline is put 
forward, which can work at 1.2GHz in 65nm technology, 
satisfying the requirement of high performance processor; 2) 
By the application of dual adder, avoiding the complement of 
negative result, and the optimization LZA logic, reducing the 
data width of LZA and the level of normalization shifter, the 
hardware overhead and operation latency of the QPFMA is 
decrease both. The QPFMA will be optimized further by 
improvement in algorithm to decrease area and latency more. 
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