
The software test case design Based on the SFTA and equivalence class

Liu Wen-hong, Wu Xin
Beijing Institute of Tracking and Telecommunications Technology

Beijing, China
e-mail: wx263@139.com

Abstract—Effectiveness and adequacy of test case design is the
important part of the research in the field of software testing.
In this paper, we analysis the software failure which may occur,
based on software-related documentation and data, to
establishment the software fault tree and get the minimal cut
sets. We use the equivalence class methods for test case design,
based on the Minimal cut sets model. Based on the set of test
cases Obtained by this method, we can use the minimum test
cases to cover all the test requirements.

Keywords- software testing; test case;fault tree;equivalence
class

I. INTRODUCTION

With the continuous development of computer science
and technology, the software play an increasingly important
role in various industries, in many areas software
implementation has reached 80% of the functionality of the
entire system. Therefore, the quality of the software system
often determines the quality of the system, and sometimes
software defects can cause very serious consequences.
Induced failure of software systems often result in very
serious consequences. For example, [1]: radiation therapy
machine software error occurred in the United States in the
1980s, leading to a serious accident which caused five
patients to death by ultra measurement of radiation. With the
deepening and a wide range of the software applications,
especially software applied to the high-speed railway,
banking, medical, military and aerospace, it need more
concern on the quality of software. The consequences will be
unpredictable if the accident caused by software defects that
occur in these systems!

Currently, software testing is still one of the important
means to ensure software quality, and one of the most critical
aspects of software testing is test case design, test case
design fully determine the Efficiency of the test. It is the
constantly explore research topics to determinate which test
case design method can meet the effectiveness and adequacy
requirements of the field of software testing.

Software fault tree analysis [2] (SFTA) is a top-down
software reliability and safety analysis methods. Start from
the event which we do not want it to occurrence (top event),
especially for the safety of personnel and equipment produce
a material impact, starts down gradually to trace the reasons
leading to the top event, until the basic event (the end of the
event). The SFTA analysis results can determine the focus
and content of the software testing.

Equivalence class method is a black box testing method
[3], it divide the software input into a number of data classes

to get the input of the testcase. Equivalence class test case
design is based on the assessment of the equivalence classes
of the input conditions, and is one of the most commonly
used method in the software black box testing.

We presented an effective method of test case design
based on the combine of SFTA and equivalence class
method, and achieve the automatic generation of test cases.

II. SOFTWARE FAULT TREE AND MINIMAL CUT SETS

The SFTA technology is widely used software safety
analysis method, it is mainly used for software black box test
case design in software testing. For those highly reliable
software, we design the test cases based on the safety
analysis to achieve effective coverage of the test cases.

A. Establish a software fault tree
The establishment of the software fault tree is the most

basic and critical task in software fault tree analysis. In
simple terms, software fault tree is built by some logic and
event symbols.

Because the accuracy of the software fault tree directly
affects the analysis of software, we need to carry out the
necessary preparatory work in building software fault tree
software. The establishment of the software fault tree usually
include: the collection and analysis of relevant technical
information, select the top events and build a fault tree
analysis.

1) the collection and analysis of relevant technical
information

The degree of perfection of the software fault tree
directly impact on the Efficiency of the set of test cases
based on the minimal cut sets, and thus requires a wide range
of relevant knowledge and experience. These knowledge and
experience rely mainly on the learning of the relevant
information and familiarity with the software, the content
need to master should include:

a) the architecture of the software system design, the
functionality of the software, the scope of the system,
interface between the software and operating environment,
etc;

b) to identify the impact of human factors on software
system;

c) To identify the state of the software in different
operation modes, as well as mutual conversion relationship
between the different modes.

In addition, we should take counsel with experienced
designers and users when we establish the fault tree, in order
to ensure the correctness of the software fault tree.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1762

For higher level softwar, in general, the software
developer has completed the software security analysis, and
further analysis can be carried out on the basis of it.

2) selecting the top event to analysis
The problem often encountered in the use of fault tree is

the fault tree is too complex to be used effectively in test
case design. To avoid this problem, we can build the fault
tree in layers according with single function unit, then
gradually extended to the top events.

This method also meets the actual requirements in the
confirmation test for all functions. Top events can be
determined with the completion of the test items of
confirmation testing. When a test item contains multiple sub-
test items, sub-test items can be used as the top event.

This method not only avoids the problem of the over
complexity of the software fault tree, but also according to
the needs and processes of the test work. Software fault tree
analysis and decomposition of the test items, test case design
is closely integrated, more conducive to the automatic
generation of test cases.

3) build a fault tree
Software fault tree symbols include event symbols and

logic gate symbols. The event symbol is used to indicate the
failure event, and the logic gate symbols is used to indicate
the logical relationship between the failure event.

Software fault tree usually uses deductive method. The
so-called deductive method firstly select top event to be
analysed (ie, the fault event which is not wanted to happen)
as the "root" of the fault tree. And then analyze the direct
cause of the top events (including all of the events or
conditions), and connected to the appropriate logic gates
with top event, as Fault Tree node(the middle of the event).
According to this method, until traced back all reasons which
caused the top events (underlying event). The underlying
event known as the end of the event, constitute the leaves of
fault tree.

The end event in the bottom of the fault tree is the root
cause of the top events. Some end event can lead to the top
event independently, some end events according to certain
logical relationship to lead to the top event. In the causes of
analysing of failure, the experience of the analyst, software
development group and software testing institutions should
be fully exerted.

B. mathematical description of the fault tree
Suppose a fault tree constituted of N end events, and the

top event of the fault tree is T, xi is the end of the event state
variables, the value of xi is 1 or 0, Φ indicates the state of the
top event, defined as follows

1
0{ix = End event i happens
 End event i not happens

1
0{Φ = top event happens
 top event not happens

Φ is determined by the state of the bottom events, i.e., Φ

=Φ(X)， wherein X=｛x1，x2，……，xi｝. Φ=Φ(X)is
the fault tree structure function of the mathematical
formulation [4].

a) for the fault tree consisting of all the elements of
logical AND gate between the top event and the end event,
the structure function can be expressed as follows:

() ()
1

1, 2, ,
n

i
i

x x i n
=

Φ = =

b) for the fault tree consisting of all the elements of
logical OR gate between the top event and the end event, the
structure function can be expressed as follows::

() ()
1

1, 2, ,
n

i
i

x x i n
=

Φ = =

The structure function of a fault tree can be represent by
the above definition. The structure function of the software
fault tree shown in Figure 1 can be expressed as:

() ()1 2 3 1 4 3 5x x x x x x x Φ =
T

M1 M2

x3x2

M4
x4x1

x5x3

x1
M3

Figure 1. software fault tree

C. mathematical description of the minimal cut sets
Cutset: a set of end events which can cause the top event.
Minimal cut sets: the cut set which does not contain any

redundant factors. If you get rid of any event of the minimum
cutset, it is no longer a cut set.

According to the above definition, in the software fault
tree,when the minimal cut set occurs, the top event must
occur. Therefore, all minimum cut sets of a fault tree
represent all the possibilities of the top event. Therefore, if
the software fault tree Contains m minimum cutset C=(C1，
C2，……，Cm), the top event of the fault tree must have
occurred when all end events of the minimum cut set occurs,
minimal cut sets can be represented as follows:

i 1

j iC x
=

=

When any of the minimal cut set in the Collection of m
minimal cut set occurs, the top event occurs, so the software
fault tree can be expressed as

1 1

m n

i
j i

x
= =

Φ =

According to the definition of the minimal cut sets of the
fault tree, using the algorithm of Fuseell-Vesely, minimal cut
sets of Figure 1 can be obtained: {x1}、{x2、x3、x4}、
{x2、x3、x5}, its software fault tree can be expressed as:

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1763

() ()1 2 3 4 2 3 5x x x x x x xΦ =
According to the above expression, the equivalence

software fault tree of Figure 1 is shown in Figure 2.

Figure 2. minimal cut set represents the equivalent software fault tree

III. GENERATES A SET OF TEST CASES

The test case design model is built by minimal cut sets of
the software fault tree, each end event is the input of the test
case, and each input's value should be based on the typical
value by the principle of equivalence classes.

A. Determine the equivalence classes of input conditions
When the typical value of the input is selected, it should

be determined according to the method of equivalence class.
Equivalence classes should be determined by the following
principles [3]:

1) If the input condition specifies a range, you can define
a valid equivalence class and two invalid equivalence class;

2) If the input condition requires a specific value, you can
define a valid equivalence class and two invalid equivalence
classes;

3) If the input conditions specified an element of a set,
you can define a valid equivalence class and one invalid
equivalence class;

4) If the input condition is a Boolean value, you can
define a valid equivalence class and one invalid equivalence
class.

For the example of a minimum cut set {x2,x3,x4}, the
typical value is: x2:a1,a2,a3; x3:b1,b2,b3; x4:c1,c2.

B. generate a set of test cases
In test case design, a minimum cut sets for a set of test

cases. A case in point is a minimum cut set {x2，x3，x4},
based by the each equivalence class of the x2，x3，x4
which determined in a),the test case are: {a1，b1，c1}，
{ a1，b1，c2}，{ a1，b2，c1}，{ a1，b2，c2}，{ a1，
b3，c1}，{ a1，b3，c2}，{a2，b1，c1}，{ a2，b1，
c2}，{a2，b2，c1}，{ a2，b2，c2}，{a2，b3，c1}，
{ a2，b3，c2}，{a3，b1，c1}，{ a3，b1，c2}，{a3，
b2，c1}，{ a3，b2，c2}，{a3，b3，c1}，{ a3，b3，c2}.
So that the number of the test case you get is

1 1 1
3 3 2 3 3 2 18C C C× × = × × =

.

IV. APPLICATION EXAMPLES

(1) Get the software fault tree. In practical applications,
we got the software fault tree shown in Figure 3, wherein the
occurrence of the intermediate event M3 occurs by any two
or more of the x3,x4,x5 resulting. Under such circumstances,
the following diagram transformation equivalent fault tree is
shown in Figure 4.

T

M1 M2

x2x1 M4M3

≥2

x4 x5x3 x5 x6x4

≥2

AND gate

OR gate

Three to two

Figure 3. software fault tree

Figure 4. improved software fault tree

(2) Get the cut sets: {x1, x2, x3, x4 },{x1, x2, x3,
x5},{x1,x2, x4, x5},{x1, x2, x4 },{x1, x2, , x5},{x1,x2,x6}.

(3) Get the minimal cut sets: {x1, x2, x4 },{x1, x2, ,
x5},{x1，x2，x6}.

(4) Set the typical value. A typical value is set according
to the principle of equivalence classes of input conditions.
Shown as Table I.

TABLE I. TYPICAL VALUE SET

x1 valid,invalid
x2 valid,invalid
x3 valid,invalid
x4 valid,invalid
x5 valid,invalid
x6 valid,invalid1,invalid2

(5) generate test cases.
The number of test case based on the cut sets is 78, and

the number of test case based on the minimal cut sets is 28.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1764

A case in point based on the minimum cut set {x1，x2，x4}
is shown in Figure 5.

Figure 5. test cases list based on one cut set

V. CONCLUSION

In this paper, based on the method and principle of fault
tree, we use the minimum cut sets as the test case generation
model, select the input of the test case by the method of the
equivalence classes, present a method for generating test
case based on the minimal cut sets of fault trees and

equivalence class, and develop a automated test case
generation tool.

The method has been applied in the escape software
testing projects, the actual results show that it is effective to
improve the adequacy degree of automation and high
reliability software testing test case design.

REFERENCES
[1] Huang Xizi,2002, software reliability, security and quality assurance,

Electronics Industry Press, Beijing 2002.10

[2] Lu Tingxiao, Zheng Pengzhou, He Guowei, Zheng Shengkui, 1995
reliability design and analysis, Beijing: National Defense Industry
Press, 1995

[3] Roger S. Pressman.Software Engineering A Practitioner's Approach
Seventh Edition, The McGraw-Hill Companies, Inc ..

[4] Sun Zhian, Pei Xiaoli, Song Xin, Dai Zhongjian, 2009, Software
Reliability Engineering, Beijing: Beijing University of Aeronautics
and Astronautics Press, 2009.3

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1765

