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Abstract—this paper studies the problem of synchronizing a 
moving agent network by decentralized adaptive control 
strategy. And, each agent node is assigned nonlinear 
connections with those of neighboring agents. The moving 
agent network model exhibits a time-varying topological 
structure in two dimensional spaces.  Base on the Lyapunov 
stability theory, some criteria for the synchronization are 
achieved via adaptive control under the constraint of fast 
switching. To validate the proposed methods, the Lorenz 
chaotic system as the nodes of the networks are analyzed, and 
numerical simulations results show the effectiveness of 
proposed synchronization approaches. 

Keywords- complex network; exponential synchronization; 
moving agent; adaptive; controller; nonlinear coupling 

I.  INTRODUCTION 

Over the past decade years, the analysis of complex 
systems from the viewpoint of networks has become an 
important interdisciplinary issue [1]. Various complex 
systems such as the Internet, the World Wide Web, 
electrical power grids, food webs and social systems, can be 
described as complex networks, where the individual units 
are abstracted by nodes, and interactions between 
individuals are represented as edge. These interactions 
between nodes determine many basic properties of a 
network. To well understand the complex dynamical 
behaviors of many natural systems, we need to study their 
operating mechanism, dynamic behavior, synchronous 
capabilities, anti-jamming ability, and so on. Among all of 
the dynamical behaviors of complex networks, 
synchronization is one of the most interesting topics and has 
been extensively investigated. 

Many studies have pointed out that topological structure 
plays a significant role in the formation of network 
synchronization [2, 3]. So far, the great majority of research 
activities have been focused on static networks, whose 
topology and coupling configuration in the network are time 
invariant [4-9]. However, these static connection topologies 
do not fit most realistic network systems; e.g., in biological, 
communication, social, and epidemiological networks the 
connection topology of the network generally changes in 
time. For these time-varying networks, it is not easy to study 
the synchronization. Therefore, researchers have recently 
devoted more and more their efforts to synchronization of 

time-varying complex networks. A time-varying complex 
dynamical network model is present by [10], and its 
synchronization phenomenon is investigated. Stilwell et al. 
prove that if the network of oscillators synchronizes for the 
static time-average of the topology, then the network will 
synchronize with the time-varying topology if the time-
average is achieved sufficiently fast [11]. How one designs 
controllers to make dynamical time-varying networks 
synchronize is a significant issue. 

Inspired by the above discussions, in this study the 
adaptive control problem for a specific time-varying network 
model is investigated. The model arises from the interaction 
of mobile agents proposed by [12], and can be widely used to 
explore various practical problems. In the constraint of fast 
switching, exponential synchronization criterion can be 
achieved. By using Lyapunov stability theory, adaptive 
controllers are designed for global exponential synchroni-
zation of moving agent network with time-varying 
topological structures. The adaptive controllers can ensure 
that the states of moving agent network fast synchronization.  

II. A MOVING AGENT NETWORK MODEL AND 

PRELIMINARIES 

Consider a complex dynamical network consisting of N 
identical nodes with nonlinear coupling, in which each node 
is an n-dimensional dynamical system. The state equations 
of the network are of the form 

1

( ) ( ( ), ) ( ) ( ( ), ) ( )
N

i i ij j i
j

x t f x t t g t h x t t u tσ
=

= − +      (1) 

where 1, ,i N=  , 1 2( ) ( ( ), ( ), , ( ))T n
i i i inx t x t x t x t R= ∈  are 

the state variables of the node i; : nf D R R+× →  is a 
smooth nonlinear vector-valued function governs the local 
dynamics of oscillator; : nh D R R+× →  is called the inner-
linking function; σ  is the coupling strength; ( ) n

iu t R∈  are 

the control inputs; ( ) ( ) N N
ijG t g t R × = ∈   is called the 

outer-coupling matrix or topological matix. This study only 
considers the case that the network is diffusively connected, 
i.e., the entries of G(t) satisfy  

1,

( ) ( )
N

ii ij
j j i

g t g t
= ≠

= −  , 1,2, ,i N=   

Futher, at given time t, suppose that if there is an edge 
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between node i and node j, then gij(t)= gji(t)=-1, else gij(t)= 
gji(t)=0. 

It should be noted that, in this study, the each node of 
network (1) is a moving agent,  proposed by [12] distributed 
in a two-dimensional space of size L with periodic boundary 
conditions. Each agent moves with velocity ( )iv t , and 

direction of motion ( )i tθ . The velocity ( )iv t  is the same for 
all individuals, (denoted by v ) and is updated in direction 
through the angle ( )i tθ  for each time unit. The agents are 
considered as random walkers whose positions and 
orientations are updated according to  

( ) ( ) ( ) ;

( ) ( ),
i M i i M

i M i M

y t t y t v t t

t t t tθ η
+ Δ = + Δ
+ Δ = + Δ

            (2) 

Where, 1, 2, ,i N=  , ( )iy t  is the position of agent i  in the 

plane at time t, ( )i tη  are N independent random variables 
chosen at each time unit with uniform probability in the 
interval [0, 2 ]π , and MtΔ  is the time unit. Each agent 
interacts at a given time with only those agents located 
within a neighborhood of an interaction radius, defined as R 
[12, 13]. When two agents interact, there is an edge between 
them. 

In this study, the control objective is to make the states 
of network (1) globally exponentially synchronize to a 
manifold defined in (3) by introducing a simple adaptive 
controller into each individual node. 

1 2( ) ( ) ( ) ( )Nx t x t x t s t= = = =              (3) 

where ( )s t  is a solution of an isolated node, 

( ) ( ( ), )s t f s t t=                   (4) 

We assume that ( )s t  is an arbitrary desired state which 
can be an equilibrium point, a periodic orbit, an aperiodic 
orbit, or even a chaotic orbit in the phase space. 

III. ADAPTIVE SYNCHRONIZATION OF MOVING AGENT 

NETWORKS 

In this section, we discuss the synchronization of 
moving agent network (1) by designing adaptive controllers 
for each agent node. Several network synchronization 
criteria are given. 

In order to achieve the objective of global exponential 
synchronizaiton on the manifold (3), let us define the error 
vector 

( ) ( ) ( )i ie t x t s t= − , 1, 2,i N=              (6) 
When the complex network (1) achieves synchronization, 

the coupling functions and control inputs should vanish, 

namely, 
1

( ) ( ( ), ) ( ) 0
N

ij i
j

g t h s t t u t
=

+ = . This ensures that any 

solution ( ( ), )if x t t  of a single isolated node is also a 
solution of the synchronized coupled network. Subtracting 
(4) from (1) yields the error dynamical system 

1

( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( )
N

i i ij j i
j

e t f e t s t t g t h e t s t t u tσ
=

= − +   (7) 

Where, ( ( ), ( ), ) ( ( ), ) ( ( ), )i if e t s t t f x t t f s t t= − , 

( ( ), ( ), ) ( ( ), ) ( ( ), )i ih e t s t t h x t t h s t t= − . 
Then, global exponential synchronization problem of the 

dynamical network (1) is equivalent to the problem of 
global exponential stabilization of the error dynamical 
system (7). In the following, we give several useful 
hypotheses. 

Assumption 1 (A1). Suppose there exists a nonnegative 
constant μ , satisfying  

|| ( ( ), ( ), ) || ( )i if e t s t t e tμ≤ . 

Assumption 2 (A2). Suppose there exists a nonnegative 
constant μ , satisfying 

|| ( ( ), ) ( ( ), ) || ( )i ih x t t h s t t e tρ− ≤  

Assumption 3 (A3). Suppose there exists a constant T 
such that coupling matrix G(t) satisfies 

1
( )

t T

t
G d G

T
τ τ

+
=   

where, G is the time-average of the coupling matrix G(t). 
This Assumption 3 implies that the switching between 

all the possible network configurations is sufficiently fast as 
defined in [11]. According to  [11] the following Lemma 
can be given. 

Lemma 1. Suppose a set of coupled oscillators network 
with fixed topology defined by  equation (8) 

1

( ) ( ( ), ) ( ( ), ) ( )
N

i i ij j i
j

x t f x t t g h x t t u tσ
=

= − + ( ijG g =   )  (8) 

admits a stable synchronization manifold and if (A3) hold. 
Then the set of coupled oscillators with a time-variant 
network defined by (1) admits a stable synchronization 
manifold. 

The proof of Lemma 1 can be obtained by main results 
of [11]. According to analysis of [12]，under the constraint 
of fast switching, AG pG= , where p is the probability that a 

link is activated and thus 
2

2
Rp

L
π= , and AG  is the all-to-

all coupling matrix with zero-row sum). That is  

2

2

1 1 1

1 1 1

1 1 1

N

NR
G

L

N

π
− − − 

 − − − =
 
 − − − 




   


             (9) 

Based on (A1) and (A2), a network synchronization 
criterion is deduced as follows. 

Theorem 1. Suppose that (A1), (A2) and (A3) hold. 
Then the dynamical moving agent network (1) is globally 
exponentially synchronized under the following sets of 
adaptive controllers 

i i iu d e= − , 1,2, ,i N=                  (10a) 
2 2|| ||t

i id e eλ= ,                         (10b) 

where 
2 2

0 2
( ) ( 1 )

2i

R
d t N N

L

σπ ρμ λ= + − + + , μ  and ρ are 

defined in the (A1) and (A2), λ  is the exponential rate 
available to be designed. 

Proof: Select a Lyapunov function as follows 
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2 * 2

1 1

1 1
( ) ( )

2 2

N N
T
i i i i

i i

V t e e e d dλ−

= =

= + −             (11) 

where constant *
id  to be given below. Then the time 

derivative of ( )V t  along the solution of the error system (7) 
is given as follows 

2 * 2

1 1

2 *

1

1 1

1

1 1
( ) ( 2 )( )

2 2

      ( )

1
  (( ( ( ), ( ), ) ( ) ( ( ), ( ), ) )

2

       ( ( ( ), ( ), ) ( ) ( ( ), ( ), )

N N
T T t
i i i i i i

i i

N
t

i i i
i

N N
T

i ij j i i
i j

N
T
i i ij j i

j

V e e e e e d d

e d d d

f e t s t t g t h e t s t t u e

e f e t s t t g t h e t s t t u

λ

λ

λ

σ

σ

−

= =

−

=

= =

=

= + + − −

+ −

= − +

+ − +

 



 



  



2 * 2 2 * 2

1 1

))

       ( ) ( )
N N

t t t T
i i i i i i

i i

e d d e d d e e eλ λ λλ − −

= =

− − + − 

 

1 1 1

* 2 * 2

1 1

 ( ( ), ( ), ) ( ) ( ( ), ( ), )

      ( )

N N N
T T
i i ij i j

i i j

N N
T t

i i i i i
i i

e f e t s t t g t e h e t s t t

d e e e d dλ

σ

λ

= = =

−

= =

= −

− − −

 

 
 

According to (A1) || ( ( ), ( ), ) || ( )i if e t s t t e tμ≤ , so  

1 1 1

( ( ), ( ), )
N N N

T T T
i i i i i i

i i i

e f e t s t t e e e eμ μ
= = =

≤ =    

Therefore,  

*

1 1 1 1

2 * 2

1

( )

   ( )

N N N N
T T T
i i ij i i i i

i i j i

N
t

i i
i

V e e g t e h d e e

e d dλ

μ σ

λ

= = = =

−

=

≤ − −

− −

  





 

Here, if (A3) hold, according to Lemma 1, under the 
constraint of fast switching, one substitute ( )ijg t  for ijg . 

Then, 

1 1 1

* 2 * 2

1 1

( ( ), ( ), )

      ( )

N N N
T T
i i ij i j

i i j

N N
T t

i i i i i
i i

V e e g e h e t s t t

d e e e d dλ

μ σ

λ

= = =

−

= =

≤ −

− − −

 

 



 

Therefore, 
2 2

2
1 1

* 2 * 2

1 1

( 1 )
2

      ( )

N N
T T
i i i i

i i

N N
T t

i i i i i
i i

R
V e e N N e e

L

d e e e d dλ

σπ ρμ

λ

= =

−

= =

≤ + − +

− − −

 

 



. 

Let 
2 2

*
2

( 1 )
2i

R
d N N

L

σπ ρμ λ= + − + + . Therefore,  

2 * 2

1 1

( ) 2 ( )
N N

T t
i i i i

i i

V e e e d d V tλλ λ λ−

= =

≤ − − − = −   

By calculating integration on both sides of above 

inequality, we get 02 ( )
0( ) ( )t tV t e V tλ− −≤ . 

According (11), one can get 
1

1
( )

2

N
T
i i

i

e e V t
=

≤ , so,  

02 ( )
0

1

1
( )

2

N
t tT

i i
i

e e e V tλ− −

=

≤ . 

Let *
0( )i id t d= , so, 02 ( )

0 0
1 1

1 1
( ) ( )

2 2

N N
t tT T

i i i i
i i

e e e e t e tλ− −

= =

≤  . 

That means, 0
2 22 ( )

0( ) ( )t te t e e tλ− −≤ . 

So, ( ) te t e λα −≤ , where 0
0( )te e tλα = . 

Therefore, in closed-loop under the controllers (10), it 
follows that the error system (7) is globally exponentially 
stable at the equilibrium set 0ie = , 1,2,i N=  , with the 
exponential rate λ . Consequently, the synchronous solution 
of the dynamical network (1) is globally exponentially 
stable. The proof is thus completed. 

IV. SIMULATION 

In this section, one example is given for illustrating the 
proposed synchronization criteria. Consider a dynamical 
network consisting of 5 identical Lorenz oscillators. Where, 
state dynamics of each agent is described by 

1 1

2 2 1 3

1 23 3

10 10 0 0

28 1 0

0 0 8 / 3

i i

i i i i

i ii i

x x

x x x x

x xx x

−      
      = − +      

      −      





,        (14) 

Where 1 2 3( )T
i i i ix x x x= .  

Each agent node interacts at a given time with only those 
agents located within a neighborhood of an interaction 
radius. Here, we let interaction radius R=40, and periodic 
boundary conditions size L=80. The initial position (0)iy  of 
agent i  in the plane is choose at random, The initial 
orientation (0) 0iθ = , other time unit chosen at each time 
unit with uniform probability in the interval, The each agent 
mobile velocity v=100, each time unit 0.1MtΔ = , each 
agent moving 50 time unit (T=50).  

When two agents interact, the state equations of each 
agent are changed to include diffusive coupling with the 
neighboring agent, acting on the following equations: 

1

( ) ( ) ( )
N

i i ij j i
j

x f x g t h x uσ
=

= − +           (15) 

where, 1, ,i N=  , 3 3:f R R→  is given by the Lorenz 

dynamics, [ ]2 1 3( ) 0
T

i i i ih x x x x= , ( )ijg t  are the elements 

of a time-varying matrix ( )G t , and i i iu d e= − , 
2 2|| ||t

i id e eλ= . 
Similar to [14, 15], since Lorenz chaotic system has a 
chaotic attractor which is confined to abounded region 

nRφ ⊂ [16], there exists a constant M satisfying 

| |,| |ij jx s M≤ for 1, 2, ,i N=   and 1,2,3j = . Therefore  

2 2
2 2 1 3 1 3|| ( , , ) || ( ) ( ) 2 || ||i i i i ih x s t x s x x s s M e= − + − ≤ . 

M can be got from the method of similar to [16]. Thus, (A3) 
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hold.  
According to Theorem 2, the synchronous solution 

( )s t  of dynamical moving agent network (15) is globally 
exponentially stable. The other parameters are assigned as 
follows: 1ik = , (0) 1id = , (0) (2 0.5 ,3 0.5 ,4 0.5 )ix i i i= + + + , 

and 1σ = . The synchronous error ie  are shown in Figure 2-

4. Obviously, the zero error is globally exponentially stable 
for dynamical network (15). 

0 0.5 1 1.5
-1

0

1

2

3

4

5

e i1
(i=

1,
2,

⋅⋅⋅,
5)

t  
Figure 2. Synchronization errors of ei1 for the network 
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0

1

2

3

4
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6

t

e i2
(i=

1,
2,

⋅⋅⋅,
5)

 
Figure 3. Synchronization errors of ei2 for the network. 
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1
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t

e i3
(i=

1,
2,

⋅⋅⋅,
5)

 
Figure 4. Synchronization errors of ei3 for the network. 

V. CONCLUSION 

The problem of global exponential synchronization for 
moving agent dynamical network is investigated. The 
complex network with nonlinear coupling is considered as a 
large-scale nonlinear system. A Lyapunov function is 
constructed to deal with the problem of controlled 
synchronization as to ensure the closed loop system stability. 
Then, a novel network synchronization criterion has been 
proved. Decentralized adaptive controllers are designed to 
achieve synchronization for the moving agent networks. 

Compared with some similar results, the proposed adaptive 
controllers are simple and effective to implement. It can 
achieve quickly asymptotically synchronization. And a 
numerical simulation of coupled Lorenz system network is 
given, which demonstrates the effectiveness of the proposed 
methods. 
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