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Abstract—This paper details a hybrid algorithm for estimating 
the parameters of polynomial-phase signals (PPSs) embedded 
in additive white Gaussian noise. This algorithm combines the 
high-order ambiguity function (HAF) and the generalized 
cubic phase function (GCPF), and is a modification of the 
hybrid CPF-HAF method. In the proposed algorithm, the 
HAF is first applied on the original PPS to produce a cubic 
phase signal, whose parameters are then estimated by the 
GCPF, instead of the CPF. Numerical examples reveals that 
the signal-to-noise-ratio (SNR) threshold and mean-squared 
error (MSE) of the proposed approach are significantly lower 
than the HAF, and the SNR threshold of the proposed 
approach is increased by about 4dB with respect to the CPF-
HAF, while the MSE is reduced by about 2dB above the 
threshold. In addition, the proposed approach is extended to 
the product version in the presence of multicomponent PPSs, 
where the product version of the CPF-HAF suffers from an 
identifiability problem. 

Keywords- parameter estimation; polynomial-phase signal; 
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I.  INTRODUCTIO 

The polynomial-phase signal (PPS) model is widely used 
for modelling signals in radar, sonar, biomedicine, 
communications, etc [1, 2, 3]. There are many techniques for 
estimating the parameters of PPSs. Of these techniques, the 
best known is the HAF [4]. It is a phase differentiation (PD) 
technique which decreases the order of the signal phase by 
one in each stage of the procedure. The resulting signal in 
the final stage is a complex sinusoid whose frequency is 
directly proportional to the highest-order phase parameter. 
With FFT algorithm and one-dimensional search, the 
highest-order phase parameter can be estimated. The 
obtained estimate is used to dechirp the original signal and 
the procedure is repeated until all the parameters are 
estimated. For an arbitrary Pth-order PPS, the HAF 
recursively applies PD calculation P-1 times. The procedure 
requires the multiplication of 12P−  signal terms, which 
causes reduced accuracy and numerous cross-terms when 
multicomponent signals are present [5]. The product high-
order ambiguity function (PHAF) [3], which is the extension 
of HAF, reduces the noise influence and cross-terms by 
using the product of several HAFs calculated with various 
lags and proper scaling. 

Recently, a simple modification of HAF has been 
proposed [6, 7]. When dealing with monocomponent PPS, 
this approach indeed outperforms the HAF in terms of the 
accuracy and signal-to-noise-ratio (SNR) threshold. 

However, the approach suffers from an identifiability 
problem when multicomponent PPSs are considered. 

The generalized cubic phase function (GCPF) has been 
proposed for estimating parameters of a cubic phase signal 
[8, 9]. Its product version, product GCPF (PGCPF), is 
capable of dealing with multicomponent cubic phase signals.  

In this paper, an approach that combines the GCPF and 
the HAF has been proposed. In Section II, a short overview 
of the signal model and the HAF, PHAF, CPF and GCPF 
techniques is given. In Section III, the proposed GCPF-HAF 
approach is detailed. Extension to multicomponent PPSs is 
described in Section IV. In Section V, numerical simulations 
are carried out to evaluate the performance of the proposed 
approach. Finally, conclusions are drawn in Section VI. 

II. BRIEF REVIEW OF HAF, PHAF, CPF AND GCPF  

The monocomponent PPS embedded in noise can be 
modelled as 
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where ( )wz n  is the additive complex white Gaussian noise 

with zero-mean and variance 2σ , 0b  is the amplitude, 

ia , 0,...,i P= , denotes the phase parameters, N  is the 

number of samples and the sampling rate is assumed, 
without loss of generality, to be unity. The SNR is defined 
as 2 2

0SNR b σ= . The problem of interest is to estimate the 

parameters { }0 ; , 0,...,ib a i P=  from ( )rz n . 

A. HAF 

For a PPS ( )sz n , The first-order and second-order 
instantaneous moments are defined as 
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High-order instantaneous moments (HIM) are defined 
recursively as 
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where M  is the order of HIM operator and iτ , 

1, 2,...,i M=  are the lag parameters. In each stage, the PD 
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operator reduces the PPS order by one. Thus 

( )1
1 1; ,...,P

PPD n τ τ−
−  of a single component PPS of order 

P  becomes a complex sinusoid with frequency 
proportional to the highest-order phase parameter 
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Taking the discrete-time Fourier transform (DTFT) 
of ( )1

1 1; ,...,P
PPD n τ τ−

− , the Pth-order HAF is obtained 
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(6) 
By locating the peak of ( )HAF ω , the highest order 

phase coefficient Pa  can be estimated as 
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When Pa  is obtained, 1Pa −  can be estimated from the 

dechirped signal ˆˆ ( ) ( ) exp( )P
s s Pz n z n ja n= − . The procedure 

is repeated until all the phase coefficients are estimated. 

B. PHAF  

When HAF is applied to multicomponent PPSs, there are 
introduced a large number of cross-terms that render the 
parameter estimation ambiguous. The product HAF (PHAF) 
is proposed to reduce the influence of these cross-terms. It is 
defined as the product of L  HAFs obtained using L  
different sets of lag parameters, 1 2 1, ,...l l l

Pτ τ τ − , 1, 2,...,l L= , 
that is 
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where 
1 1

1

P l
l i ii

F τ τ−

=
= ∏ is the frequency scaling factor. The 

highest order phase coefficient Pa  can be estimated as 
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C.  CPF  

The CPF, which was introduced to extract the 
instantaneous frequency rate (IFR) of a cubic phase signal, is 
defined as [10] 
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It is shown in [11] that for a given value of n , the CPF is 
maximized when 2 32 6a a nΩ = + . Hence, 2a  and 3a  can be 
estimated from the CPF evaluated at two instants, 0n =  
and 1n n= , as 

2 0
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where 0
ˆ arg max (0, )
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Ω = Ω  , and 
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Ω = Ω . 

D. GCPF  

GCPF was originally developed in [8] to estimate the 
parameters of a cubic phase signal. The GCPF is defined as 
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When the cubic phase signal is substituted into (15), the 
result is  
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It is obvious that in the absence of noise, ( , )GCPF n Ω  

yields a peak at 3aΩ = . Hence, 3a  can be estimated as  

3ˆ arg max ( , )a GCPF n
Ω

= Ω                                    (16) 

When 3a  is estimated, the other parameters can be 
estimated by the dechirping technique.  

III. HYBRID GCPF-HAF METHOD  

Since each PD operation in the HAF increases the SNR 
threshold by approximately 6 dB and produces additional 
interference terms, reducing the number of PDs can improve 
the accuracy and the SNR threshold [12]. The hybrid CPF-
HAF reduces the number of PDs by two with respect to the 
HAF, so it has lower SNR threshold and MSE. However, 
when multicomponent PPSs are considered, there exist 
multiple peaks for the magnitude of PCPF-HAF at each time 
instant. Thus, an identifiability problem arises when 
employing the PCPF-HAF.  

For parameter estimation of PPSs of order higher than 
three, we propose the following two-stage approach which 
can be referred to as the hybrid GCPF-HAF method. First, 
we calculate (P-3)th-order PD of the signal ( )rz n as [7] 
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and ( )z nω  is the sum of all noise influenced terms. 
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In the second stage, we calculate the GCPF 
of 3

1 3[ ; ,..., ]P
PPD n τ τ−

−  at time instant 1n , and estimate the 

highest-order parameters, Pa , as 
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When Pa  is estimated, lower order parameters can be 
estimated by repeating the two stages on the dechirped 
signal. 

The detailed MSE derivation of the GCPF estimator can 
be derived using the method in [13]. The optimal 1n value is 

given as 
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where     denotes the round up operator.  

IV. EXTENSIONS TO MULTICOMPONENT PPSS  

When multicomponent PPSs are considered, the distinct 
cross-terms occur due to the four-order nonlinearity of the 
GCPF-HAF. To discern the auto-terms from the cross-terms, 
the hybrid GCPF-HAF has to be modified.  

By using the product and spectral scaling technique 
similar to the PCPF-HAF, the product version of GCPF-
HAF can be defined as the product of several hybrid GCPF-
HAFs calculated with different lag sets 
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where 
3 1

1

P l
l i ii

F τ τ−

=
= ∏ is the frequency scaling factor and 

L  is the number of different sets of lags.  The product and 
spectral scaling operations ensure the auto-terms are 
properly aligned and amplified, while the cross-terms are 
misaligned and weakened. Therefore, the highest-order 
phase parameter of each component can be estimated by 
locating the peaks of 1( , )PGCPF n Ω  

V. NUMERICAL SIMULATIONS  

In this section, numerical simulations are provided to 
illustrate the performance of the proposed method. The 
number of Monte Carlo simulations is 300 in all examples. 

Example 1: In order to compare with other methods, the 
signal in this example is a six-order PPS with the parameters 
given by: 0 1b = , 0 1.0a = , 1 / 4a π= , 2 2.1 4a e= − , 

3 8.2 6a e= − , 4 6.2 8a e= − , 5 2.3 10a e= − , 6 5.4 12a e= −  
and the number of samples is 257. The SNR is varied 
between 5 and 30dB. The MSEs of the 6a  estimate are 
plotted in Fig.1. From Fig.1, it can be seen that the GCPF-
HAF has about 5dB lower SNR threshold than the HAF and 
about 4dB higher than the CPF-HAF. Above the threshold, 
the GCPF-HAF outperforms the HAF and CPF-HAF about 
4dB and 2dB, respectively.  
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Figure 1. MSEs versus SNR comparison between GCPF-HAF and rival 

methods for 6a  estimate of the six-order PPS 

Example 2: For multicomponent analysis, the tested 
signals in this example are the same as the two-component 
PPS used in [7] except for the amplitudes which are different 
in [7] to discern the two signals. The first component has 
parameters given by 0 1b = , 0 0a = , 1 0.77a = , 

2 2.41 4a e= − , 3 1.61 6a e= − − , 4 3.34 9a e= − − , while the 

second component has parameters given by 0 1b = , 0 0a = , 

1 0.83a = − , 2 6.82 4a e= − − , 3 3.94 6a e= − , 

4 2.35 9a e= − . The number of samples for each component 
is 1024. The PCPF-HAF is calculated by the product of 
seven CPF-HAFs, which are calculated using two time 
instants 0n = , 1 106optn =  and lags ( )opt K lτ τ= + , 

1, 2,..., 7l = , where 85optτ = is set according to [7] and 

[ ]( ) 38, 26, 4,0, 4, 26,38K l = − − − . When the SNR is 20dB, 

the magnitudes of (0, )PCPF Ω  and 1( , )optPCPF n Ω  are 
plotted in Fig. 2(a) and Fig. 2(b), respectively. The cubic 
phase coefficients corresponding to the two components can 
be estimated by locating two distinct peaks in Fig. 2(a). 
However, in order to calculate the highest-order coefficient, 
two peaks should be located in Fig. 2(a) and Fig. 2(b). In 
this situation, four estimated results are obtained for the 
highest-order coefficients, and two of the results are spurious. 
Therefore, the PCPF-HAF suffers from the problem of 
identifying the parameters when multicomponent PPSs are 
present. 

Fig. 3 shows the magnitude of ( , )PGCPF n Ω with the 

lags given by ( )opt K lτ τ= + , 1, 2,...,13l = , where 
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[ ]( ) 70, 60, 50, 45, 26, 11,0,11, 26, 45,50,60,70K l = − − − − − −  

and 85optτ = . Since ( , )PGCPF n Ω  involves in a four-order 
nonlinearity, the number of lags used in Fig. 3 is more than 
that in Fig. 2. The highest-order phase parameters of both 
PPS components can be estimated by locating two peaks in 
Fig. 3. Then lower order parameters can be estimated by 
dechirping and CLEAN techniques [9]. This example 
reveals that the PGCPF-HAF is capable of dealing with 
multicomponent PPSs. 
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Figure 2. The magnitudes of PCPF of two-component PPS. (a) The 

magnitude of (0, )PCPF Ω , (b) The magnitude of 1( , )optPCPF n Ω . 
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Figure 3. The magnitude of PGCPF of two-component PPS 

VI. CONCLUSION  

In this paper, a hybrid algorithm for estimating the 
parameters of PPSs has been proposed. It is a modification 
of the hybrid CPF-HAF method and referred to as the hybrid 
GCPF-HAF method. The proposed algorithm outperforms 
the HAF in terms of the accuracy and SNR threshold. Since 

the GCPF involves in a four-order nonlinearity and the CPF 
employs a bilinear transform, the SNR threshold of the 
GCPF is slightly higher than the CPF. It should be noted that 
above the threshold, the MSE of the GCPF-HAF is lower 
than the CPF-HAF. When multicomponent PPSs are 
considered, the product version of the proposed algorithm 
removes the identifiability problem which the product 
version of the CPF-HAF suffers from. Computer simulations 
have been carried out to support the theoretical results. 
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