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Abstract—An efficient algorithm is proposed to estimate the 
parameters of multicomponent cubic phase signals with 
different amplitudes. This algorithm is based on the product 
generalized cubic phase function (PGCPF) and the product 
cubic phase function (PCPF), which are used to compute the 
cubic phase coefficient and chirp rate of the cubic phase signal, 
respectively. The parameters of the component with the 
strongest amplitude are estimated firstly. Then filtering out 
the strongest component, the parameters of other components 
in the residual signal are estimated one by one until all of the 
signal components have been estimated. Computer simulations 
are carried out to illustrate the effectiveness of the proposed 
algorithm.  
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I.  INTRODUCTION 

The polynomial-phase signal (PPS) model is widely used 
for modelling signals in radar, sonar, biomedicine, 
communications, etc [1]. One important class of such signal 
is the cubic phase signal which is frequently encountered in 
modern radar systems and electronic reconnaissance [2, 3]. 
This paper focuses on estimating the parameters of 
multicomponent cubic phase signals.  

There are many techniques for estimating the parameters 
of cubic phase signals. Of these techniques, the maximum 
likelihood (ML) technique can provide very high estimation 
accuracy [4]. However, the ML technique requires a three-
dimensional joint maximization and suffers from heavy 
computation burden.  

Therefore, researchers have advised more 
computationally efficient alternative approaches based on 
multilinear functions [5, 6]. The best known multilinear 
function is the HAF which is designed to estimate the 
polynomial phase parameters directly [1]. The HAF 
approach employs iterative differences of the phase to obtain 
a sinusoid whose frequency is directly proportional to the 
highest order phase parameter. However, when HAF is 
applied to multi-component signals, the cross-terms between 
the components give rise to undesired sinusoids. The 
product high-order ambiguity function (PHAF) [7], which is 
the extension of the HAF, has the ability to suppress the 
noise and spurious harmonics by using high-order multiple 
transform technique and proper scaling. The disadvantage of 
the PHAF is the relatively high order of the nonlinearities as 
the HAF. The higher orders of nonlinearities can produce the 
higher SNR threshold [8]. 

The PGCPF is an efficient approach to deal with 
multicomponent cubic phase signals with the same or similar 
amplitude [9]. However, when the amplitudes of multiple 
components are much dissimilar, the weak peaks belonging 
to the auto-terms may be overshadowed by the peaks caused 
by undesired cross-terms, and then it will fail to provide 
reliable estimations. 

In this paper, an efficient algorithm is proposed to 
estimate the parameters of multicomponent cubic phase 
signals with different amplitudes. The rest of this paper is 
organised as follows. In Section II, the estimation problem is 
formulated and the GCPF and PGCPF are briefly reviewed. 
In Section III, the algorithm that estimates the parameters of 
multicomponent cubic phase signals is presented. In Section 
IV, numerical simulations are given to illustrate the 
presented algorithm. Finally, conclusions are drawn in 
Section V. 

II. BRIEF REVIEW OF GCPF AND PGCPF  

A multicomponent cubic phase signal embedded in noise 
is modelled in discrete-time as 
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where ( )w n  is the additive complex white Gaussian noise 

with zero-mean and variance 2σ , K  is the number of 

signal components, kA  is the amplitude of the thk  

component, ,0 ,1 ,2 ,3 1{ , , , }K
k k k k ka a a a =  denotes the phase 

coefficients to be estimated, and N  is an odd integer and 
the sampling rate is assumed, without loss of generality, to 
be unity.  

GCPF and PGCPF are proposed to estimate the 
parameters of PPSs with higher order. Due to the lower-
order nonlinearity, they outperform all of the rival 
algorithms when cubic phase signals are analyzed [9]. 

A. GCPF 

GCPF was originally developed in [9] to estimate the 
parameters of a PPS. For a cubic phase signal defined as    
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The GCPF for ( )s n  is defined in [9] as follows: 
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where ∗  denotes the conjugate. 
When the signal in (2) is substituted into (3), the result is  
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It is obvious that in the absence of noise, ( , )GCPF n Ω  

yields a peak at 3aΩ = . Hence, 3a  can be estimated as  

3ˆ ( , )arg maxa GCPF n
Ω

= Ω                                     (5) 

After 3a  has been estimated, the other parameters can be 
estimated by the dechirping technique [10] 

B. PGCPF 

The advantage of GCPF is the relatively lower orders 
nonlinearities involved compared with various rival 
algorithms, such as the HAF, PHAF, PWVD, HP function 
[9]. However, the GCPF has fourth-order nonlinearity. It 
produces cross-terms when multicomponent cubic phase 
signals are present. The cross-terms in the GCPF have a 
particular dependence on the time index, while the auto-
terms are localized along straight lines independent of the 
time index. Therefore, the cross-terms can be suppressed by 
the product version of GCPF, which is defined as [9] 
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l
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=
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where ln  denotes the L  different time positions. For a 
single component cubic phase signal, the n  value which 
gives rise to the best 3a  estimation is ( 1) / 4n N= − . For 
multicomponent cubic phase signals, in order to attenuate 
the cross-terms and enhance the auto-terms, ln  should be 

around ( 1) / 4N −  and sufficiently spaced. 

C. limitations of PGCPF  

When dealing with multicomponent cubic phase signals 
using PGCPF, it is generally assumed that all the 
components have the same or similar amplitude [9], which 
may not be true in practice. If the amplitudes of multiple 
components are much different, PGCPF will fail to provide 
reliable estimations. This is because the weak peaks 
belonging to the auto-terms may be overshadowed by the 
peaks caused by undesired cross-terms. 

Two examples will be given to illustrate the 
shortcomings of PGCPF. In these examples, we assume that 

513N =  samples of data are available. The signals conform 
to the model as shown in (1). Specifically, the SNR is 
defined as the first component’s SNR, which is 2 2

1A σ . In 
these examples, SNR is set to be 0dB. 

Fig. 1 shows the amplitude of GCPF for the sum of two 
cubic phase signals with the same amplitude. The first 

component has parameters 1,1 / 6a π= , 3
1,2 1 10a −= × , 

6
1,3 3 10a −= × , 1 1A = , while the second component has 

parameters 2,1 / 4a π= , 3
2,2 3 10a −= × , 6

2,3 5 10a −= × , 

2 1A = . For simplicity, the phase coefficients 1,0a  and 2,0a  
are assumed to be zero. From Fig. 1, it is shown that the 
auto-terms are submerged in the cross-terms and they can 
not be detected correctly.  
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Figure 1. GCPF for components with the same amplitude 

Fig. 2 shows the amplitude of PGCPF with the time 
positions given by: [ 1 108n = , 2 118n = , 3 128n = , 

4 138n = , 5 148n = ]. It is obvious that the cross-terms are 
attenuated and auto-terms are amplified greatly. The cubic 
phase coefficients  1,3a  and  2,3a  corresponding to the two 
signals can be easily obtained from Fig. 2.    
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Figure 2. PGCPF for components with the same amplitude 

When the amplitudes of two components are different: 

1 0.4A =  and 2 1A = , using the same time positions as in Fig. 
2, the amplitude of PGCPF is shown in Fig. 3. We can 
clearly see only one peak corresponding to the component 
with the stronger amplitude. This is because the difference in 
the amplitudes is amplified in the PGCPF.  
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Figure 3. PGCPF for components with different amplitudes 

III. ALGORITHM FOR PROCESSING MULTICOMPONENT 

CUBIC PHASE SIGNALS 

Even though PGCPF has the advantage to suppress noise 
and cross-terms, it can only reveal the component with 
higher amplitude. The estimation algorithm for 
multicomponent cubic phase signals with different 
amplitudes is presented as follows. 

Step 1) Initialize by setting 1k =  and ( ) ( )kx n x n= , for 

1 1

2 2

N N
n

− −− ≤ ≤ . 

Step 2) Estimate the parameters of the thk component, 
which has the highest amplitude. 

a) Let (3) ( ) ( )k kx n x n= , for
1 1

2 2

N N
n

− −− ≤ ≤ . 

b) Choose a set of integer ln  and compute ( )PGCPF Ω . 

Then estimate ,3ka  by  

,3ˆ ( ( ))arg maxka PGCPF
Ω

= Ω                   (7) 

c) Dechirp the original signal by 3
,3ˆka n , and then 

estimate ,2ˆka using PCPF [11]:  
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order to suppress the cross-terms and reduce the 
computational cost, qn  should be around ( 1) / 2N −  and 

sufficiently spaced. 
d) Estimate ,1ˆka  by dechirping the original signal by 

2 3
,2 ,3ˆ ˆk ka n a n+  and then using the Fourier transform: 
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e) Estimate ,0ˆka  and kA  by evaluating 
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Step 3) Filtering out the thk  signal component 
a)  
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b) 
   (0) 2 3

1 ,1 ,2 ,3ˆ ˆ ˆ( ) ( ) exp[ ( )]k k k k kx n x n j a n a n a n+ = + +          (15) 

Step 4) Substitute 1k k= + , and go back to Step 2 until 
all of the signal components have been estimated or the 
residual energy of the signal is less than a threshold xEε , 

where  ε  is an arbitrarily small fraction, and xE  is the 
energy of the original signal. 

At the end of Step 2, the parameters of 
the thk component have been estimated. Its residual content 
will be highly localized around the 0 Hz spectral region [12, 
13]. It is able to efficiently remove this component via Step 
3 [14]. In Step 3, the low frequency content is filtered out 
from the dechirped signal, and then the outcome is 
modulated by 2 3

,1 ,2 ,3ˆ ˆ ˆexp[ ( )]k k kj a n a n a n+ + . 

IV. NUMERICAL SIMULATIONS  

In this section, numerical simulations are provided to 
illustrate the performance of the proposed approach. 

The signal to be analyzed is the same as in Fig. 3. The 
amplitude of PGCPF of original signal ( )x n  is shown in Fig. 
4(a) where a clear peak can be seen. Then the cubic phase 
parameter 2,3a  corresponding to the stronger component is 

estimated. 1( )x n  is obtained by dechirping the original 

signal by 3
2,3â n . The amplitude of PCPF of 1( )x n  is shown 

in Fig. 4(b), where the time positions are given by: 
[ 1 236n = , 2 256n = , 3 276n = ]. Then the quadratic phase 

parameter 2,2a  is estimated. Dechirp 1( )x n  by 2
2,2â n , and 

then 2 ( )x n  is obtained. The amplitude of FFT for 2 ( )x n  is 
shown in Fig. 4(c). In order to obtain accurate peak location, 
the FFT operation is implemented by padding zeros to 
length 2048. From Fig. 4(c), the initial frequency 2,1a  can be 
estimated. After the parameters of the first component are 
estimated, we remove it from the original signal. Next, we 
compute PGCPF, PCPF and FFT of the residual signal and 
then the parameters of the weaker component can be 
estimated. 

Table 1 shows the estimation bias and the mean squared 
error (MSE) of the phase parameter estimations obtained 
from 200 independent Monte-Carlo simulations. The MSE is 
compared with the CRLB, which is given in [15]. 
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Table 1. The estimation bias, MSE and CRLB 

                            2,3a                2,2a              2,1a  
True                           65 10−×           33 10−×           / 4π  

estimation bias    64.9900 10−×    33.0050 10−×     0.7854  

MSE (dB)               157.60−           100.24−         50.26−  

1,3a                     1,2a                 1,1a  

True                       63 10−×               31 10−×              / 6π  

estimation bias     62.9800 10−×     31.0150 10−×    0.5216  

MSE (dB)              153.98−            96.48−           53.79−  
 
CRLB (dB)           158.25−             115.96−        65.56−

It is shown that the signal component with stronger 
amplitude has higher estimation accuracy than the other 
component. This is because the removing operation causes 
error propagation in the recursive procedure. 
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Figure 4. The amplitudes of transformations. (a) PGCPF of the original 

signal, (b) PCPF of the original signal, (c) FFT of the original signal 

V. CONCLUSION  

An efficient algorithm for estimating the parameters of 
multicomponent cubic phase signals with different 
amplitudes has been proposed. It starts by estimating the 
parameters of the signal component with the strongest 
amplitude. Then removing the signal component whose 
parameters have been estimated, it proceeds to estimate the 
next signal component, and so on, until all of the signal 
components have been estimated. In additional, it has been 
shown that the PGCPF and PCPF used in the algorithm 
could suppress the noise and cross-terms significantly. 
Numerical simulations validate the performance of the 
proposed algorithm. 
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