
Parallel solution of maze optimal path based on ant colony algorithm

Liu Yu
College of Mechanical and Control Engineering

Guilin University of Technology
Guilin, China

e-mail: lewis_5709@163.com

Xiao Yi
College of Information Science and Engineering

Guilin University of Technology
Guilin, China

e-mail: louisxcode@yahoo.com

Abstract—In order to solve efficiency of maze optimal path
problem based on ant colony algorithm, we proposed a CUDA
platform parallel programming model, executing the algorithm
with GPU that significantly improve the calculation efficiency.
A parallel matrix design method was introduced and the ant
colony searching process was changed into parallel matrix
operations. To reduce the access overhead and increase
algorithm running speed, data were rationally organized and
stored. Experiments of different scale maze matrix test show
that speedup will be increased with the expansion of the matrix
size. In our experiments, the maximum speedup is about 11.5.

Keywords- ant colony algorithm; Maze problem; optimal
path; parallel process;

I. INTRODUCTION

The maze problem is a typical search and traversal
problem of graph. Many intelligent problems could be
transformed into the maze optimal path problem, for
example: chess game, strategy decision, robot path planning.
The space and time complexity of the traditional algorithm
will be growing exponentially with the expansion of the
matrix size and complexity. So it’s very hard using it to
resolve the large scale cases. According to the character of
maze optimal path problem, Reference [3] the application of
ant colony algorithm to solve maze problem divide ants into
two groups and set three life cycles, then get the solution by
iterative cycle. But with the expansion of the matrix, the
loops of iterative cycle will be greatly increased. Reference
[4] an improvement to [3] algorithm set the distance to gate
as basic parameter k, and then distributes ants at the position
k. It will decrease the count of loops by ant colony algorithm.
MMAS (Max-Min Ant System) algorithm is also applied to
this process to avoid convergence too early. That algorithm
avoids the search by every ant’s taboo list, but it needs
judgment to many conditions on each loop. This article wills
analysis those algorithms mentioned before and post a
parallel solution to solve the maze optimal path problem
based on ant colony algorithm. It uses parallel computation
for the data in each iterative cycle the processing speed of the
algorithm mentioned in [4].

II. PARALLEL PROGRAMMING MODEL

In November 2006, NVIDIA introduced CUDA, a
general purpose parallel computing architecture – with a new
parallel programming model and instruction set architecture
– that leverages the parallel compute engine in both CPU and

GPU to solve many complex computational problems in a
more efficient way than only CPU. In the CUDA
environment, CPU is the main memory called host and GPU
is a co-processor called device. In this model, CPU
responsible for carrying out the logic transaction processing
and serial computing, GPU is responsible for the
implementation of highly threaded parallel processing tasks.
CPU has the memory of the host side called host memory
and GPU has the memory of the equipment side called
device memory. CUDA provides specific API functions to
operate the device memory, the operation includes the
initialization of the memory space, open up and release, as
well as host memory and device memory data transfer. Fig. 1
is CUDA parallel programming model. It shows the function
running on the GPU is called the kernel function. A kernel
function just a part of CUDA program which can be
executed in parallel. The complete CUDA program is
composed by the serial processing function on host and the
parallel processing kernel function on device. The complete
program execution in accordance with the order of the
corresponding statement in turn.

Figure 1. Parallel programming model

III. THE IMPLEMENTATION OF ALGORITHM OF PARALLEL

COMPUTING

A. The improvement to existing algorithm

Reference [4] defining the following data structure for
maze. It prevents the redundant visit to taboo list and the
space cost for each path position visited by each ant.
struct{

G rid 0

B lock （ 0， 0）

T hread（ 0， 0）

T hread（ 1， 0） T hread（ 1， 1）

T hread（ 0， 1） ...

...

G rid 1

B lock （ 0， 0）

T hread（ 0， 0）

T hread（ 1， 0） T hread（ 1， 1）

T hread（ 0， 1） ...

...

S erial
C ode

P arallel
K ernel

S erial
C ode

P arallel
K ernel

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1826

int pheromones; //pheromone of this position,
Initialized as p. If blocked, set as 0

int I_dist； //the distance from this position to
entrance of maze, Initialized as ∞

int O_dist； //the distance from this position to
exit of maze, Initialized as ∞
}Maze[M][N] //M × N maze

In order to improve the efficiency of the algorithm to
solving maze optimal path problem and to make algorithm
more suitable to parallel computing, we make such changes
to the algorithm in [4]: 1. Add a “Wall” data structure to
maze data structure. It has the same data structure with maze
data. It is designed for reducing the judgment to boundary
conditions by doing condition judgment to obstacle
information. 2. The updating maze path information named
“Reclamation”. Execute the reclamation before ants moving,
so that the amounts of path updating will quickly moving
towards to a minimum value. 3. Add ants’ pheromones
matrix and moving position matrix. They’re used to store the
pheromones of 8 directions from every ant’s current position
and the next selected position. These matrices will be used at
parallel computing.

B. Algorithm parallelization solving

According to Amdahl's law, the impact of the overall
system performance depends on proportion and acceleration
efficiency of the program which can be optimized. The
reclamation and ants moving is the main part of original
algorithm, collectively called ant searching. Ants move
based on four judgment conditions for up to a position in
around 8 directions. Experiment on 1024 order matrix, we
test 6 single searching process to calculated the time of
original serial algorithm program data initialization and ants’
determining the start point, the time of single searching for
the optimal path and the time of roulette method. The test
results show in Tab. 1.

The test results show that searching process total spend
96.5% running time of the original serial algorithm. The
roulette method accounted for 53.9% of the searching
process time, 52.1% of the total running time. Parallelizing
searching part of the algorithm can dramatically improve the
speed of whole algorithm. According to Amdahl acceleration
formula:

)1(1 −+
=

pf

p
s , when ∞→p can be inferred

f
s

1=
 .

That means acceleration limit of the algorithm in the search
process is 20.

C. Algorithm Parallel Implementation

According to the original algorithm, each ant carries out
the following activities in turn: reclamation, moving base on
the rules, searching the optimal path. When the optimal path
exists ant update the pheromone. Reclamation and optimal
path pheromone updating process involves parallel writing
issues. Other parts have parallelism in the whole process.
Based on the [5], if we make ants as GPU threads, will get
lower efficiency.

Each ant in the reclamation process need to get 8 around
direction pheromone from the maze matrix and to store in the

ants’ pheromone matrix: Round matrix. Ants’ next location
information was stored in the moving position matrix: Result
matrix. In order to improve the efficiency and reduce the
GPU parallel access memory delay, Round matrix design
were designed with following rules.

The maze Matrix is a matrix of order M. We assume the
rows of the Round matrix is m, the column is n. According to
original algorithm, the number of ants is 2M. Introducing the
parameter χ, we can get 922/2 ×= χχM . Compute the

parameters




 += 5.0)9/2(log
2

1
2 Mχ ,so  92 ×= χm and

 χ2/2Mn = .

Each ant has 9 spaces in the matrix, called ant
information space. The information store the random number
and ant’s 8 direction pheromone around order by column.
The random number also has the function of a flag to
indicate whether the ant needs the next location information.
Every GPU thread based on the thread number corresponds
to an ant space. Threads parallel read Round matrix ant’s
information space and use Roulette method to calculate the
probability of each direction. Threads based on the random
number determine the next location of the moving and write
to the corresponding positions in Result matrix. Fig. 2 is
program structure diagram. The entire parallel computation
process is shown in Fig. 3.

Maze [M][M]

Round [m][n]

...

Thread_1

Thread_2m

Thread_2

Result[2M]

Host

Device

Figure 2. Program structure diagram

D. Algorithm Description

Step 1: Data initialization. Host initialize maze matrix,
counter and constant coefficients. Ants initialize
starting point based on the value of k. Device
initialize and allocate space for the Round matrix
and Result matrix.

Step 2: The Ant Colony reclaim 8 around directions and
update maze matrix. Then save the Round matrix in
corresponding ant information space.

Step 3: Ant Colony moves base on the rules. When one of
the first three conditions is met, the flag will be

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1827

marked on Round matrix in corresponding ant
information space.

Step 4: Transfer the data from host to device.
Step 5: Create GPU multiple threads to parallel compute the

next location information based on Round matrix.
Information is stored in the Result matrix.

Step 6: Transfer the data from device to host. Ant Colony
move base on the information on Result matrix.

Step 7: Search the optimal path. If optimal path exist, update
the pheromone on the optimal path.

Step 8: To determine whether the iteration parameters meet
preset value. If it’s true, output the optimal path.
Otherwise, reset the Ant Colony information and go
to Step 2.

IV. EXPERIMENTAL RESULTS

We used a PC with Windows XP operation system that
has one Intel Core i3 3.3 GHz processor and one NVDIA
GeForce 405. According to the original algorithm parameter
settings, Tab. 2 shows the experimental results of single
search action on 1024×1024 matrix size.

Speedup refers to the ratio of the time required by the
application running on the CPU time and on the GPU. From
the data in Tab. 2, parallel algorithm running in 1024 × 1024
order matrix get the speedup of 11.5. Although still a gap
with the theoretical value, but greatly reduced the searching
time. The data in Fig. 4 shows searching time of the optimal
path based on different maze matrix size from 64 × 64 to
1024 × 1024. The serial and parallel algorithms were used 20
times, respectively, for each data test. Original algorithm as
the matrix order increases, program run time of rapid growth.
The proposed algorithm is its control of linear growth and
faster computing speed.

V. CONCLUSION

This paper post a parallel solution to solve the maze
optimal path based on ant colony algorithm. Compared with
algorithm used in the [4], it has the following advantages: 1)
adding the maze boundary to reduce the judgment of the
boundary of the ant colony can improve the efficiency of ant
colony searching; 2) individually processing the ant colony
reclamation can improve the convergence rate of a single
searching; 3) making use of GPU for parallel computation
can improve the operating speed and get higher speedup, and
remain the cost negligible at the same time.

ACKNOWLEDGMENT

This work has been supported by The National Natural
Science Foundation of China under research project
41264005 and also supported by The Guangxi department of
education under the research project 201102ZD018.

REFERENCES
[1] Colorni A, Dorigo M, and Maniezzo V, “An investigation of some

properties of an ant algorithm,” Of the Parallel Problem Solving from
Nature Conference (PPSNp92). Brussels. Belgium. Elsevier
Publishing, pp. 509–520, 1922.

[2] Dorigo M, Maniezzo V, and Colorni A, “The ant system:
Optimization by a colony of cooperating agents,” IEEE Transactions
on System, Man and Cybernetics Part B, vol. 26, pp. 29–41, 1996.

[3] HU Xiao-bing and HUANG Xi-yue, “Ant colony algorithm in maze
optimal path problem,” Computer Simulation, vol. 22, pp. 114–116,
2005. (references)

[4] ZHANG Gong-jing and XU xi-jun, “The application of ant colony
algorithm to solve the maze optimal path,” Journal of Qingdao
University (Natural Science), vol. 21, pp. 61–65, 2008. (references)

[5] LI Jian-ming, HU Xiang-pei, PANG Zhan-long and QIAN Kun-ming,
“A fine-grained parallel GPU accelerated ant colony algorithm,”
Control and decision-making, vol. 24, pp. 1132–1136, 2009.

TABLE I. DIFFERENT PARTS OF THE RUNNING TIME OF THE ORIGINAL ALGORITHM

Number of searching 1 2 3 4 5 6 Average

Initialization 0.656 0.594 0.609 0.641 0.594 0.578 0.612

Searching 18.219 15.734 17.891 17.922 19.547 13.110 17.071

Roulette 10.014 10.014 9.582 10.126 9.421 6.810 9.205

Program running 18.875 16.328 18.500 18.563 20.141 13.688 17.683

TABLE II. TIME OF THE PARALLEL ALGORITHM

Number of searching 1 2 3 4 5 6 Average

Initialization 0.75 0.656 0.641 0.547 0.593 0.75 0.656

Searching 0.875 0.922 0.859 0.859 0.875 0.875 0.878

Program running 1.625 1.578 1.500 1.406 1.468 1.625 1.534

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1828

Maze Data and Ant Colony
initialization

Using pheromone Calculate
the proportion of each point

optimal path
exist

Begin

End

Ant Colony reclaim

Update Round matrix

Yes

Exist a point of the
composition of the

optimal path.

Shorter

Exist a point have
smaller I_dist or

O_dist

No No Exist a point
have reclaimNo

Yes

Ant move to the point

No

update the pheromone on
the optimal path based on

MMAS algorithm

Yes

Output the optimal path

All ant are
dead

No

Setting ant state to death

Setting ant state to death

GPU

Using roulette method select
the point

Update Result martix

No

Yes Yes

YesCreate multiple threads

Figure 3. Algorithm parallel flow chart

0

5

10

15

20

64×64 150×150 256×256 384×384 512×512 768×768 1024×1024

Matrix size

T
i
m
e

Serial algorithm

Parallel algorithms

Figure 4. Contrast of the algorithm running time

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1829

