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Abstract—Concerning the problems of high time complexity 
and topological inconsistency existed in vector map 
simplification, a multi-resolution model of curve for 
progressive transmission is proposed in this paper. By using 
pre-stored vertex deviation to simplify curve and using an 
optimized monotone chain intersection algorithm to maintain 
topological consistency, the model can quickly generate 
topologically consistent multi-resolution curve data. Finally, 
the model was used in the experiment of progressive 
transmission of river network and verified its effectiveness. 
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I. INTRODUCTION 

With the development of spatial information services, 
the transmission of spatial data over the network is 
increasingly frequent. However, the transmission time of 
massive spatial data is often long because of limited 
network bandwidth; this becomes a technical bottleneck that 
restricts the development of spatial information services. 
The progressive transmission of spatial data contains two 
steps: First, prior to transmission, the spatial data is 
decomposed into different resolution representations 
according to the volume of data to be transferred, network 
transmission speed and display equipment of the client; and 
then when received request from the client, the serve sends 
the low resolution representation of spatial data quickly 
which represents the rough outline of the data and then the 
higher resolution one which represents a more accurate 
outline of the data. After received the low resolution 
representation of spatial data, the users can browse and 
analysis the data. When network is busy, the progressive 
transmission of spatial data can significantly reduce the time 
that users wait for data.  

The progressive transmission system of vector data is 
shown in Fig.1. There have two technical difficulties: one is 
how to rapidly generate multi-resolution representation of 
vector data; the other is how to ensure topological 
consistency.  

 
Figure.1. Progressive transmission of vector data over the internet 

II. RELATED WORK 

Bertolotto proposed a conceptual framework for 
progressive transmission of vector map in [1], due to the 
actual difficulties of automatic generalization the conceptual 
framework is still hard to achieve. The transformation from 
the original vector map to a low resolution one can be done 
by map simplification method, however, topological 
inconsistency often happens in the process of map 
simplification. Yang proposed a multi-resolution model of 
vector data for progressive transmission which can maintain 
topological consistency in [2,3], but the time complexity of 
the model is high. Line simplification algorithms proposed 
in [4,5] that can achieve high graphic precision often have a 
high time complexity. A linear BLG structure is proposed to 
speed up line simplification algorithm in [6]. Ai proposed 
changes accumulation model to transfer polygon data in [7], 
while the topology is not considered in the model. Several 
methods have been proposed to maintain topological 
consistency between spatial objects in map simplification in 
[8,9,10], but the time complexity of these methods is also 
high. Unreasonable intersection and self-intersection are 
main forms of topological inconsistency. The sweep-line 
algorithm proposed by Bentley in [11] is classical method to 
search intersections between segments. Park proposed 
monotone chain intersection algorithm which has better time 
efficiency than that of sweep-line algorithm in [12].  

This paper proposes a multi-resolution model of curve 
for progressive transmission. By calculating and storing the 
vertex deviation, monotone chain and weight of curve in 
advance, the model can generate topologically consistent 
multi-resolution curve in shorter time. The time advantage is 
reflected in two places: First, by selecting vertexes 
according to their deviations stored in advance, time 
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complexity of simplifying line is reduced from O (n2) to O 
(n); second, the time to handle topological inconsistency is 
shortened based on an optimized monotone chain 
intersection algorithm. 

III. MULTI-RESOLUTION MODEL OF CURVE 

Curve of this paper is defined as a series of line 
segments that are connected to each other without self-
intersection. Vertex on the curve, curve L, simplified curve 

'L  can be defined as following: 
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The frame of multi-resolution model of curve is shown 

as Fig.2. For the time consuming works such as calculating 
vertex deviation, monotone chain and weight of curve are 
done in preprocessing stage, operations as selection, 
generalization and topological consistency maintaining can 
be finished rapidly in simplification stage. 

 
Figure.2   Frame of multi-scale model of curve 

3.1  Computation of vertex deviation and monotone chain of 
curve  

The execution result of Douglas-Peucker algorithm is 
BLG tree, vertexes which have larger deviation are located 
in the upper layer of BLG tree. The importance degree of 
vertex is reflected by the value of deviation. All vertexes’ 
deviation can be computed in advance and be stored in a 
linear table structure in accordance with the order of 
vertexes. Because line simplification can be implemented by 
selecting vertexes according to their deviations, Time 
complexity of simplifying line is reduced from O(n2) to 
O(n). 

Constraint points which include endpoints of curve 
and vertexes that are shared by one more objects can be 
divided into two types: the first type of constraint points 
consists of endpoints of curve, the only adjacent or 
intersecting vertex of adjacent or intersecting objects, and 
endpoints of adjacent edge which are shared by adjacent 
objects; the second type of constraint points is vertexes on 
the adjacent edge except for endpoints. The method for 
maintaining topological consistency in this paper can be 
described as following: for the first type of constrain points, 
they must be prevented to be deleted by modifying their 
deviations to the largest deviation on the curve; for the 
second type of constrain points, because each vertex has 

multiple deviations that are corresponding to adjacent 
objects, the max one of these deviations is adopted as its 
deviation; for other vertexes, after they are deleted, an 
optimized monotone chain intersection algorithm is used to 
search all intersecting segments. If minimum convex hull of 
each monotone chain is calculated, monotone chains can be 
divided into independent monotone chain whose convex 
hull does not overlap with all other convex hulls, and 
dependent monotone chain whose convex hull overlaps at 
least one convex hull. Monotone chain intersection 
algorithm can be optimized by excluding the independent 
monotone chains. 

Two adjacent curves are shown in Fig.3. Thick, thin 
solid line stands for curve A, B respectively, and dash line 
stands for the boundary of convex hull of monotone chain. 
Curve A, B are decomposed into one independent monotone 
chain (P1P2P3P4P5P6) and two dependent monotone chains 
(P6P7P8P9 and P10P7P11P12P13). The endpoints’ deviation of 
independent monotone chain should be modified to the 
largest deviation on the chain to ensure the type of 
independent monotone chain unchanged in the process of 
simplification.  

 
Figure.3. Curve is decomposed into monotone chains 

Fig.4 describes the process of configuring vertex deviation 
and monotonic of curve A. The type of monotone chain is 
labeled on its left endpoint, number 1, -1, 0 stands for 
dependent monotone increasing chain, dependent monotone 
decreasing chain, and independent monotone chain 
respectively. 

 
Figure.4. Configure deviation and monotonic of vertexes 

3.2  Index for curves according to their weights 

When displaying curve set of certain resolution, curves 
that their sizes are less than current resolution or have less 
importance do not need to be displayed. The size and 
importance of curve is considered and quantified as weight. 
Selection of curves is based on their weights. As shown in 
Fig.5, the weight of curve is set to the value of long side of 
its minimum bounding rectangle, and then is adjusted 
according to its importance. The index aimed to fast select 
curves is built on adjusted weights. 
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Figure.5. Index for curves according to their weights 

3.3  Generation of multi-resolution curve 

Supposing current resolution for selection and 
generalization is R1, R2 respectively, the method for current 
resolution representation of curve set can be described as:  

① Select all curves that satisfy the condition: Wi’>=R1. 
② For each selected curve, select all vertexes whose 

deviations are larger than R2 and pick up all dependent 
monotone chains simplified. The time complexity of this 
step is O (n), where n is the number of vertexes. 

③ Execute optimized monotone chain intersection 
algorithm to search intersecting segments based on 
dependent monotone chains. 

④ Solve all intersecting segments found in previous 
step. First, add vertex that has max deviation on the segment 
and split it into two new segments, and then judge if there 
are intersections between all new segments. If it is, repeat 
above steps. 

⑤ Output topologically consistent curve data of 
current resolution. 

The time complexity of sweep-line algorithm is 
O((n+k).Logn), where n is the number of vertexes in all 
curves, and k is the number of intersections. The time 
complexity of monotone chain intersection algorithm is 
O((n+k).Logm),where m is the number of monotone chains. 
The time complexity of optimized monotone chain 
intersection algorithm is O((q+k).Logp), where q is the 
number of vertexes in all dependent monotone chains, and p 
is the number of dependent monotone chains. It is obvious 
that q is smaller than n, and p is smaller than m and n, so the 
time performance of optimized monotone chain intersection 
algorithm is better. 

IV. EXPERIMENT AND ANALYSIS 

The progressive transmission system of river network 
is developed based on .NET platform. The model is adopted 
to generate multi-resolution river network on the server side. 
The client receives multi-resolution river network sent from 
the server and reconstructs them to a high-resolution river 
network automatically. Fig.6 is data view of the client. 
River network keeps its topological consistency and is 
getting more and more detailed as the data transmission 
continues.  

 

(a) 

 
(b) 

 
(c) 

Figure.6. Data view of the client under progressive transmission mode 

Time performance of the model is tested by counting 
the total generation time of a fixed resolution (R1=50m，
R2=5m)river network when data volume changes. 
Experimental results are shown as Fig.7. 
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Figure.7. Relationship between the generation time of curve set and the 

data volume 

    As seen from Fig.7, when data volume increases, the total 
generation time varies approximate linearly. That is because 
curve generation process includes simplification and 
topology maintenance, and the time complexity of these two 
phases are respectively O(n), O((q+k).Logp), Where n is the 
number of vertexes and q is the number of vertexes on the 
dependent monotone chains, and p is the number of 
monotone chains, and k is the number of intersections. 

V. CONCLUSIONS 

Progressive transmission is an effective way to 
improve transmission efficiency of spatial data over the 
internet. The multi-resolution model of curve proposed in 
this paper supports the generation of topologically 
consistent curve data rapidly and has proved its 
effectiveness in experiment of progressive transmission of 
river network. Experimental results show that the total 
generation time for multi-resolution curve is nearly linear 
with increasing the amount of data changes. The model is 
suitable for progressive transmission of massive vector data. 
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