
The Aplication Of Testbed Tbrun In Unit Test Of Aviation Software

Yuan Li
Research institute of electronic Science and technology

University of electronic science and technology of China
Chendu, China

75460833@qq.com

Dan Liu
Research institute of electronic Science and technology

University of electronic science and technology of China
Chendu, China

349194719@qq.com

Abstract— Based on actual project of unit test,it disscussed the
application of testbed in unit test of aviation software.It
introduced the configure of three general aviation software's
development environment in testbed,and some modifications of
code before test.It analysed steps of unit test and several
common problems during steps,in addition,it introduces defect
of testbed in unit test. Each function can be verified after unit
test,at the same time,other test processes are guaranteed.

Keywords- testbed tbrun;unit test;configure of the
environment

I. INTRODUCTION (HEADING 1)
The requirements of Aviation software for reliability and

security is topmost ,Either a software error are likely to cause
significant economic losses and casualties, Therefore, we
must to do the most rigorous and demanding test to it. Unit
testing is an important part of the software testing process, it
can verify the correctness of features of each function and
the consistency of the detailed design description. It can
provides a certain basis for reliability and security of
software and reduce the overhead of software testing.

II. UNIT TEST METHOD AND TOOL SELECTION

To detect the logic error of every function is the goal of
unit test, the method of unit test is divided into static test
and dynamic test, static test includes document review,
static analysis and code review, dynamic test generally uses
white-box test, auxiliary to black-box test.

Aviation Software is embedded software, its
development platform environment is Tornado, CCStudio,
VisualDSP++.Before unit test, we must ensure that the
function can be measured. First of all, we should ensure that
the function can run independently, First, it must be isolated
from other code ,using pilling; Second isolated from
dependent system to resolve differences between
compilation environment and platform.

Testbed developed by LDRA can solve the two
problems which we face, first, it can automatically piling ,
second, it can compile on different development
environment, to ensure the consistency with code compiled
platform.

Tbrun module of it is designed to do unit testing, which
enables engineers to input easily enter the input and output
data, automatically generate test drive no need to write test
scripts. In addition, It can automatically generate stubs,
engineers simply fill in the code stubs directly according to

the need of test cases. After completed, we can directly see
the test coverage analysis chart. In a word, it can improve
the efficiency of software test and save engineer’s time and
energy. Here we briefly introduce Aviation Software test
process and notes.

III. EASE OF USE CONFIGURATION OF SEVERAL COMMON

DEVELOPMENT PLATFORM ENVIROMENT

During the test, the diriver execution environment needs
to be consistent with code compilation environment, so we
need to configure compilation environment of testbed as the
code compile environment before the unit test. Embedded
development environment mainly has the following three
categories: Tornado,CCStudio,VisualDSP++，then we make
a brief introduction for three environment configuration. In
the process, TBConfig is essential.

Enviroment configuration of Tornado:
1) Open the Tornado configuration interface in

TBConfig, select testbed and Tornado’s installation path, fill
in the host name, keep the default vaule,then click OK;

2) In the testbed installation path, open
Vxsim_build.bat in Vxwoks file, fill the path of header files
in it,and plus “PAUSE” at the end of file, such we can easily
view error message.

Enviroment configuration of CCS:
1) Open the CCS configuration interface in TBConfig,

choose testbed and CCS’s installation path, keep the default
vaule, then click OK;

2) In Setup CCStudio, set CPU for device simulator
which code run on, and delete the value of GEL File;

3) In the testbed installation path, open
Tic28xx_Compile.bat in Tic28xx file, fill the path of header
files in it, and plus “PAUSE” at the end of file, such we can
easily view error message.

Enviroment configuration of Visual DSP++:
1) Open the CCS configuration interface in TBConfig,

choose testbed and Visual DSP++’s installation path,
specially attention to Build option, fill in the full path of
cc21k,keep the default vaule, then click OK;

2) Open Visual DSP++ development environment,
create a new session, which be consisitent with development
model;

3) Increase the environment variable path, if Visual
DSP++ is installed on the D drive, path=” D:\
VisualDSP++\System;D:\ VisualDSP++”;

4) In the Testbed installation path, open the
Ad21060tcl.tem in Visual DSP file, if the session is ADSP-

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1925

21060, ill the path of header files in it, such we can easily
view error message.

IV. STEPS AND PRECAUTIONS OF UNIT TEST

USED TBRUN

Before test, judge whether the test code has infinite
loop,such as while(1),while(TRUE).if it has infinite loop, we
must modify it, otherwise, test cases will always perform and
can not quit, we generally use “for” loop statement to instead,
design cycle numbers according to the actual situation of the
code.

In embedded code, we often encountered that the code
get the value from the hardware, generally, we redefine a
same type variable instead of it, then assign value to it ,for
example:

#define SCICTL2 ((unsigned int *) 0x7054)
 Fun()
{ ……
while((*SCICTL2&0x80)!=0x80);
……
}
For *SCICTL2,we need to redefine a variable such as

unsigned int SCICTL2_test;the code is modified
accordingly:

Fun()
{ ……
while((SCICTL2_test)!=0x80);
 ……
 }
After the code is modified, we can select a file to start

test, then select the file storage path during testing process,
and select the corresponding header file path of tested code,
choose “unit test only” to enter Tbrun interface, following
steps can be roughly summarized as the following steps, as
shown in Figure 1:

Figure 1

A. Design test cases
Before unit test, we understand the function of each

function by reading the software detailed design document.
On the basis of understanding the I/O conditions and logical

structure, we design test cases which can sufficiently find
hidden error as little as possible. Each example is a “profile”
which the program run at a certain moment, we fill the input
and output values of cases according to the program running
path, we need to pay special attention to the design of values
of array and pointer. Array usually has a lot of numbers, it’s
a waste of time that we input the values manually, so, when
we click the right button of mouse to create a new test case,
we generally choose “Remove all elements from the test
case”, such as Figure 2, and use “for” loop statement to
initialize arrays.

Figure 2

When we design the initial value of pointer, we can’t
directly assign an address to it, but redefined same type
global variables, then assign the address of the variable to it,
then we assign values to global variables. For example:

void SubmenuProc(INT32 No, BP_D10_ST*
BP_D10_pst)

 { ……………
 if(BP_D10_pst->NotInSubmenuOrApplication ==
1)
 …………
 }

BP_D10_ST* BP_D10_pst is a parameter of the function,
there is an input parameter: BP_D10_pst, which TBrun
generates, because it is not global variables, we need to
redefined a same type parameter, such as: BP_D10_ST
g_BP_D10_pst,then we assign &g_BP_D10_pst to
BP_D10_pst,and assign value to g_BP_D10_pst,for
example:g_BP_D10_pst.NotInSubmenuOrApplication = 1;

B. Set stubs for code

Figure 3

Just click the button in Figure 3, it can pile all stub
functions, if some stubs need some special treatment, click
the right button of mouse, then choose “set code segment” to
design stubs.

C. Generate,compile and execute drives files
In unit test process, if there is an error in compile and

execute process, we usually open sequence work directory to

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1926

deal with failure, for example, in Figure 4,open the .dyn file,
view the running print message. It is the last message where
the error usually appears, then we can quickly locate the
error. After, we add some print message according our
analysis in it, save it and recompile it in Testbed, then view
the contents of .dyn files and find the problems, so we can
find solutions.

Figure 4

 For example:
 DIS_51zzqqzz (3);
 {
 InitSerialPort (2) ;
 }
 InitVolumeValue (DISNo) ;
 memset (& s_BPUAgreeDISSubmenu [DISNo] , 0 ,

sizeof (BPDIS_CMD11_ST)) ;
 InitDISRecvProc (DISNo) ;
 semTake(SEM_Q_PRIORITY , 5) ;
 DIS_51zzqqzz (4) ;
 Its .dyn file content is as follows:
 ldra S N 1 64 1 0 V
 ldra S I V Z DISNo
 ldra S E 1
 ldra EXH DIS_64.exh
 ldra 1
 ldra 3
semTake(SEM_Q_PRIORITY , 5) is likely to be the

location of error, add print statement in the front and back of
it, such as: DIS_51zzqqzz (33333). When the print
statement is in the front, recompile and execute, if it is
printed in .dyn file, and it is not printed when the print
statement is in the back, so we can determine the error is
caused by semTake(SEM_Q_PRIORITY , 5).

D. Separate output and analyze the results
Comparing the actual output value and the expected

output value, if the test cases fail, we check the program
execution path combined with the coverage maps to find the
error. Click the node in the graph, we can see the executed
code and see the front and back code of the node by clicking
“previous” and “next”, so we can find the position of error.
Figure 5 is a part of coverage graph.

Figure 5

E. Repeate the previous four steps
Repeat the previous four steps until the combined

coverage of branch and statement is 100% unless the code
itself is abnormal. In addition to it, it is a disadvantage of
Testbed that Testbed simulate some code to run, such as :
interrupt problem,which may make the coverage is less than
100%.For example, the following code:

While(1)
{
if(count_LED_period>250)
 {
 ……………
 count_LED_period=0;
 if(count_delay<3)
 count_delay++;
 else if(flag_delay==0)

 flag_delay=1;
 }
}

The value of count_delay can be added only once
ostensibly when if branch is true, as the value of
count_LED_period satisfies the conditions, but he value of
count_LED_period will be changed by interrupt procedures
because count_LED_period is a global variable, so that the if
branch may be true again. Testbed does not allow infinite
loop so the value of count_LED_period will not be changed
by interrupt procedures.

V. CONCLUSION

Testbed greatly improve the efficiency of Aviation
software’s unit test and save a lot of consumption, at the
same time, it save a lot of time on document work, so
engineers can quickly and accurately locate errors.

ACKNOWLEDGMENT

I am very grateful to Ningbo major scientific and
technological research: The development and application of
system monitoring internet public opinion , which funded me.
It’s number is 2011C51007.

Funded project: The development and application of
system monitoring internet public opinion, Number:
2011C51007

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1927

REFERENCES
[1] Shuang Cao ,Research on Automatic Generation Method of Test Case

for Aviation Software, Nanjing University of Aeronantics and
Astronautics Master’s degree thesis,2010.

[2] Liu Yuanyuan, Implementation of aircraft control software’s unit test,
Beijing University of Posts and Telecommunications Master’s degree
thesis,2010.

[3] Xu Ke, The research of embedded software test, University of
Electronic Science and Technology of China Master’s degree
thesis,2006.

[4] Wang yu, He yongjun, The application of Testbed/Tbrun in
embedded software unit test, Acoustics and Electronics
Engineering,2006.

[5] Zou Huirong, Coverage test of aircraft central maintenance system
based on LDRA Testbed, Aeronautical Computing Technique,2010.

[6] Li Zhongping, Yue Hai, Xue Jing,The application of Testbed in
Aerospace software, Aerospace Control,2007.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

1928

