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Abstract-A G -design of vKλ  is a pair ),( BX , where X  is 

the vertex set of vK  and B  is a collection of subgraphs of 

vK , such that each block is isomorphic to G  and any two 

distinct vertices in vK  are joined in exact (at most, at least) 

λ  blocks of B . In this paper, we will discuss some holey 

designs and incomplete designs for the join graph of 1K  and 

4C  with a pendent edge for 1=λ . 

Keywords- G-packing design, G -covering design, Holey 
G -design 

I. INTRODUCTION 

A complete multigraph of order v  and index λ , 

denoted by vKλ , is an undirected graph with v  vertices, 

where any two distinct vertices x  and y  are joined by λ  

edges ),( yx . Let G  be a finite simple graph. A G -

design G - )(vGDλ ( G -packing design G -

)(vPDλ , G -covering design G - )(vCDλ ) of vKλ  is a 

pair ),( BX , where X  is the vertex set of vK and B  is a 

collection of subgraphs of vK , called blocks, such that 

each block is isomorphic to G  and any two distinct 

vertices in vK  are joined in exact (at most, at least) λ  

blocks of B . A packing (covering) design is said to be 
maximum (minimum) if no other such packing (covering) 
design of the same order has more (fewer) blocks. The 
number of blocks in a maximum packing design (minimum 
covering design), denoted by ),,( λGvp ( ),,( λGvc ), is 
called the packing number (covering number). Obviously, 
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where  x   )( x  denotes the greatest (lest) integer y  

such that xy ≤  ( xy ≥ ). A G - )(vPDλ  ( G - )(vCDλ ) 

is called optimal and is denoted by G - )(vOPDλ  ( G -

)(vOCDλ ) if the left (right) equality in above inequality 

holds. Obviously, there exists a G - )(vGDλ  if and only if 

),,( λGvp ),,( λGvc= . So a G - )(vGDλ  can be 

regarded as a G - )(vOPDλ  or a G - )(vOCDλ . The 

leave )(PLλ of a packing design G - )(vPDλ  = ),( Pv is 

a subgraph of vKλ and its edges are the supplement of P  

in vKλ . When P  is maximum, | )(PLλ | is called leave-

edges number and is denoted by )(vlλ . Similarly, the 

repeat-edge graph )(CRλ  of a covering design G -

)(vCDλ  ),( Cv=  is a subgraph of vKλ  and its edges are 

the supplement of vKλ  in C . When C  is minimum, 

| )(CRλ | is called repeat-edges number and is denoted by 

)(vrλ . Generally, the symbols )(PLλ  and )(vlλ  can be 

denoted by λL  and λl  briefly, while )(PRλ  and 

)(vrλ can be denoted by λR  and λr  correspondingly. 

Let 
t

i
iXX

1=

= be the vertex set of 
tnnnK ,,1,1  , a 

complete multipartite graph consisting of t  parts with size 

tnnn ,,, 21   respectively, where the sets iX
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)1( ti ≤≤  are disjoint and || iX = in . Denote 
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 and },,,{ 21 tXXXG = . For any given graph 

G , if the edges of 
tnnnK ,,1,1 λ , a t -partite graph with 

replication λ , can be decomposed into edge-disjoint 
subgraphs A , each of which is isomorphic to G  and is 
called as block, then the system ),,( AGX  is called a holey 

G -design with index λ , denoted by G - )(THDλ , where 
11

2
1
1 ,,, tnnnT =  is the type of the holey G -design. 

Usually, the type is denoted by exponential form, for 

example, the type mk
m

kk nnn ,,, 21
21   denotes 1n  occurrences 

of 1k , 2n  occurrences of 2k , · · ·, mn occurrences of mk . A 

G - )1( 1wHD wv−
λ  is called an incomplete G -design, 

denoted by G - ),( wvIDλ ),,( AWV= , 

where vV = , wW =  and VW ⊂ . For λ  = 1, the index 

λ  of λGD λHD λID λOPD λOCD is often omitted. 

Lemma ]7[1.1  There exists G -
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Nonexistences and some constructions of the maximum 
packing designs and the minimum covering designs for the 

join graph of 1K  and 4C  with a pendent edge for 1=λ , 
will be given out as follows. For convenience, as a block in 
graph design G  is denoted as following vertex-labels. 

 
 

Figure 1. Graph G  

II. MAIN METHOD  

Lemma 2.1
[2] 

Given positive integers ,,,, mwh λ  if 

there exist G - )( mhHD  and G - ),( wwhID +λ  then 

(1). Suppose there exists G - )(wOPDλ  or G -

)( whOPD +λ , so does G - )( wmhOPD +λ . 

(2). Suppose there exists G - )(wOCDλ  or G -

)( whOCD +λ , so does G - )( wmhOCD +λ . 

Lemma 2.2
[2] 

Given positive integers uv ,,λ . Let X  be 
a v set, then 

(1). Suppose there exists G - =)(vOPDλ ),( PX  with 

the leave ⊂)(PLλ G , then there exists G - )(vOCDλ  

with the repeat-edge graph G \ )(PLλ . 

(2). Suppose there exist both G - =)(vOPDλ ),( PX  

and G - =)(vOPDu ),( PX ′ with leaves )(PLλ  

and )(PLu ′  respectively. If | )(PLλ | + | )(PLu ′ | ul += λ , 

then exists G - =+ )(vOPD uλ ),( PPX ′∪  with the leave 

∪)(PLλ )(PLu ′ . 

III. CONSTRUCTIONS FOR HOLEY DESIGNS 

Lemma ]5[1.3  There exist G - )9( 12 +tHD  and G -

)18( 2+tHD  for 1≥t . 

Theorem 3.2 There exists G - )9( 4HD . 

Proof. Give the direct construction of G - )9( 4HD  on 

vertex set 49 ZZ × and blocks are: 

)4,0,1,2,0,0( 021210 ,( 00 , 12 , 26 , 13 , 28 , 04 ),( 00 , 23 ,

33 , 15 , 34 , 02 ),( 10 , 27 , 31 , 02 , 30 , 17 ),( 00 , 35 , 21 , 36 , 27

, 34 ),( 00 , 30 , 14 , 31 , 16 , 07 ) mod (9, −). 

IV. CONSTRUCTIONS FOR ID 

Theorem 4.1 There exists G - ),9( ϖϖ+ID  

for .12,8,7,,3,2 =ϖ  

Proof. There are 4+ϖ  blocks in each G -
),9( ϖϖ+ID . 

:2=ϖ },{ 2133 xxZZ ∪× . ( 10 , 01 , 02 , 1x , 21 , 11 ), 

( 00 , 22 , 21 , 2x , 10 , 11 ) mod (3, −). 

:3=ϖ },,{ 3219 xxxZ ∪ .       

(0, 1x ,1, 2x ,2,6),(0, 3x ,3,6,4,1),(6, 1x ,7, 2x ,8,3),(2,5,4,8,7,0

),(3, 1x ,4, 2x ,5,0),(1, 3x ,2,3,7,4),(5, 3x ,6,1,8,0). 

:4=ϖ ∪9Z { 1x , 2x , 3x , 4x }. 

(2, 1x ,1, 2x ,0,4),(3, 1x ,4, 2x ,5,6),(6, 1x ,7, 2x ,8,4),(0,6,1,

8,3,7),(3, 3x ,1, 4x ,2,6),(7, 3x ,8, 4x ,0,5),(4, 3x ,6, 4x ,5,8),(7,

5,1,4,2,8). 

:5=ϖ },,,{ 52133 xxxZZ ∪× . 

( 10 , 1x , 00 , 2x , 22 , 21 ),( 00 , 3x , 21 , 4x , 11 , 22 ),( 22 ,

00 , 02 , 5x , 12 , 11 )mod(3,−). 

:6=ϖ ∪9Z { 1x , 2x ,···, 6x }. 

b

c

e

dc

f
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(6, 1x ,3, 2x ,4,8),(5, 1x ,7, 2x ,0,8),(1, 1x ,8, 2x ,2,5),(5, 3x

,6, 4x ,8,2),(0, 5x ,1, 6x ,2,4),(2, 3x ,7, 4x ,3,4),(4, 3x ,0, 4x ,1,5

),(8, 5x ,7, 6x ,6,2),(5, 5x ,3, 6x ,4,7),(7,0,6,1,3,8). 

:7=ϖ ∪9Z { 1x , 2x ,···, 7x }. 

(0, 1x ,6, 2x ,1,5),(4, 1x ,5, 2x ,7,6),(8, 1x ,3, 2x ,2,6),(2, 3x

,3, 4x ,1,6),(5, 5x ,6, 6x ,0,8),(4, 5x ,2, 6x ,3,5),(7, 3x ,5, 4x ,0,2

),( 7x ,1,4,0,3,6),(2, 3x ,8, 4x ,6, 7x ),(1, 5x ,7, 6x ,8,6),( 7x ,2,5,

8,7,3). 

:8=ϖ },,,{ 82133 xxxZZ ∪× . 

( 00 , 1x , 20 , 2x , 10 ,10),( 11 , 3x , 00 , 4x , 21 , 22 ),( 21 , 5x

, 10 , 6x , 00 , 01 ),( 22 , 7x , 00 , 8x , 10 , 11 )mod(3,−). 

:12=ϖ ∪9Z { 1x , 2x ,···, 12x }. 

(6, 9x ,2, 10x ,4,3),(8, 5x ,1, 6x ,6, 12x ),(7, 5x ,0, 6x ,4, 12x ),

(0, 11x ,1, 12x ,2,8),(0, 1x ,4, 2x ,3, 11x ),(1, 1x ,2, 2x ,5, 11x ),(7,

1x ,8, 2x ,6, 11x ),(5, 5x ,2, 6x ,3, 12x ),(1, 3x ,6, 4x ,4, 11x ),(2,

3x ,3, 4x ,7, 11x ),(5, 3x ,0, 4x ,8, 11x ),(3, 7x ,1, 8x ,7, 12x ),(7,

9x ,1, 10x ,5,4),(6, 7x ,0, 8x ,5, 12x ),(4, 7x ,2, 8x ,8, 12x ),(8, 9x

,0, 10x ,3,6). 

Theorem 4.2 There exists G - ),18( ϖϖ+ID  for 

.8,7,6,5,4,2=ϖ  

Proof. There are 172 +ϖ  blocks in each G -
),18( ϖϖ+ID . 

:2=ϖ },{ 2163 xxZZ ∪× .        

( 00 , 1x , 11 , 2x , 21 , 01 ),( 30 , 1x , 41 , 2x , 50 , 00 ),( 00 , 01 , 10

, 22 , 30 , 02 ),( 30 , 12 , 31 , 21 , 40 , 01 ),( 00 , 31 , 40 , 41 , 52 , 30

),( 10 , 21 , 20 , 40 , 50 , 02 ),( 50 , 51 , 20 , 41 , 12 , 13 )mod (3, −).                  

:4=ϖ ∪18Z { 1x , 2x , 3x , 4x }.  

(4, 3x ,5, 4x ,6,14),(16, 3x ,17, 4x ,0,15),(2,4,9,5,11,3),(3,

1x ,5, 2x ,4,14),(3,9,15,12,17,0),(1, 3x ,2, 4x ,3,10),(9, 1x ,10,

2x ,11,16),(0,7,3,6,5,16),(6, 1x ,8, 2x ,7,14),(12, 1x ,13, 2x ,1

4,16),(7, 3x ,9, 4x ,8,16),(15, 1x ,17, 2x ,16,9),(2,6,12,7,13,3),

(1,8,11,12,5,14),(11,6,15,7,17,1),(0, 1x ,2, 2x ,1,14),(13, 3x ,1

5, 4x ,14,9),(1,16,6,9,13,8),(1,10,15,4,7,16),(17,5,13,4,10,6),

(2,3,8,10,16,4),(14,2,17,8,15,5),(0,4,8,9,12,8),(0,10, 31 ,11,1

4,3),(10, 3x ,11, 4x ,12,16). 

 :5=ϖ },,,{ 52163 xxxZZ ∪× . 

( 20 , 5x , 31 , 11 , 42 , 41 ),( 00 , 30 , 40 , 20 , 01 , 42 ),( 00 ,

1x , 12 , 2x , 21 , 52 ),( 30 , 1x , 41 , 2x , 52 , 20 ),( 10 , 3x , 21 , 4x ,

32 , 31 ),( 50 , 5x , 02 , 50 , 12 , 30 ),( 40 , 3x , 52 , 4x , 01 , 32 ),(

10 , 00 , 50 , 40 , 11 , 21 ),( 30 , 20 , 21 , 42 , 50 , 32 )mod (3, −). 

:6=ϖ ∪18Z { 1x , 2x , · · · , 6x }.                  

(0,4,7,10,13,5),(17, 5x ,0, 6x ,1,10),(15, 1x ,16, 2x ,17,6),(

7, 3x ,9, 4x ,8,14),(1, 3x ,2, 4x ,3,13),(8, 5x ,10, 6x ,9,2),(5, 5x ,

7, 6x ,6,16),(12, 1x ,14, 2x ,13,17),(1,6,11,7,14,2),(2, 5x ,13,

6x ,4,14),(0,14,5,8,11,16),(1,15,4,8,12,17),(10, 3x ,12, 4x ,11

,17),(1,5,9,13,16,2),(11, 5x ,12, 6x ,13,6),(4,9,16,10,17,5),(3,

9,14,10,15,5),(14, 5x ,15, 6x ,16,12),(0,9,12,3,6,15),(16, 3x ,0

, 4x ,17,14),(0, 1x ,2, 2x ,1,11),(4, 3x ,6, 4x ,5,11),(13, 3x ,14,

4x ,15,11),(2,7,13,8,15,0),(3, 1x ,5, 2x ,4,11),(6, 1x ,8, 2x ,7,1

2),(9, 1x ,10, 2x ,11,3),(3,7,16,8,17,2),(2,5,10,6,12,4). 

 :7=ϖ ∪18Z { 1x , 2x , · · · , 7x }.        

(13, 3x ,14, 4x ,15,12),(14, 5x ,15, 6x ,16,11),(15, 1x ,16,

2x ,17,10),(17, 5x ,0, 6x ,1,8),(1, 3x ,2, 4x ,3,7),(6,13, 7x ,12,1

,16),(4, 3x ,6, 4x ,5,17),(7, 7x ,14,0,15,8),(10,3,14,5,15,1),(4,9

,12,16,13,5),(12, 1x ,13, 2x ,14,8),(1,5,9,14,11,0),(2, 5x ,3, 6x

,4,15),(2,15,9,16,6,10),(3, 1x ,4, 2x ,5,12),(10, 3x ,11, 4x ,12,3

),(2, 7x ,5,8,11,3),(6, 1x ,7, 2x ,8,12),(2,7,12,17,13,3),(1,10,

7x ,4,7,17),(11, 5x ,13, 6x ,12,0),(0,4,8,13,10,2),(5, 5x ,6, 6x ,

7,16),(17,6,14,4,11,15),(9, 1x ,10, 2x ,11,7),(0, 7x ,3,6,9,17),(

0, 1x ,1, 2x ,2,14),(8,3,17, 7x ,16,5),(16, 3x ,17, 4x ,0,5),(8, 5x ,

9, 6x ,10,16),(7, 3x ,8, 4x ,9,3). 

:8=ϖ },,,{ 82163 xxxZZ ∪× .                             

( 00 , 1x , 11 , 2x , 21 ,10),( 30 , 1x , 50 , 2x , 41 , 10 ),( 10 , 3x ,

21 , 4x , 32 , 00 ),( 20 , 50 , 01 , 10 , 51 , 32 ),( 40 , 3x , 51 , 4x , 01 ,

00 ),( 20 , 5x , 31 , 6x , 41 , 10 ),( 50 , 5x , 02 , 6x , 10 , 11 ),( 10 ,

7x , 22 , 8x , 52 , 34 ),( 00 , 7x , 30 , 8x , 41 , 22 ),( 10 , 40 , 00 ,

31 , 30 , 21 ),( 50 , 31 , 40 , 41 , 21 , 20 )mod (3, −). 
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