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Abstract—This paper describes the design and implementation 
of an ARM based embedded operating system micro kernel 
developed on Linux platform with GNU tool chain in technical 
details, including the three-layer architecture of the kernel 
(boot layer, core layer and task layer), multi-task schedule 
(priority for real-time and round-robin for time-sharing), IRQ 
handler, SWI handler, system calls, and inter-task 
communication based on which the micro-kernel architecture 
is constructed. On the foundation of this micro kernel, more 
components essential to a practical operating system, such as 
file system and TCP/IP processing, can be added in order to 
form a real and practical multi-task micro-kernel embedded 
operating system. 

Keywords-embedded operating system; micro kernel; ARM; 
multi-task schedule; inter-task communication 

I.  INTRODUCTION 

With the rapid developments of electronic and computer 
technologies, operating system has already been an essential 
and necessary component of an embedded system. Although 
some famous embedded operating systems have been already 
developed and used, such as VxWorks, QNX, Embedded 
Linux, Windows CE, uC/OS, eCos, etc., due to the dedicated 
features, various types of embedded operating systems are 
needed to meet the requirements of the field [1]. It is 
obviously necessary and valuable to enhance the research on 
the design and development of embedded operating systems. 

The ARM based embedded operating system micro 
kernel developed by the author of this paper is just a good 
attempt, in which the inter-task communication lays the 
foundation of the micro-kernel. The main contributions of 
this embedded operating system micro kernel are: 

• Both real-time and time-sharing scheduling. As we 
know, real-time system is an important application 
field of embedded systems. While on the other hand, 
time-sharing tasking is also popularly required, e.g. 
various kinds of Web based embedded control or 
management systems. The micro kernel described in 
this paper is designed to implement both kinds of 
schedules. The priority schedule is used for real-time 
tasks and round-robin for time-sharing ones. 

• Three-layer architecture. The kernel is designed as a 
three-layer system and all the manipulations of the 
kernel are elaborately designated to each of them. 
For example, the boot layer responds for the booting 
and initialization of the operating system, the core 
layer for the internal manipulations of the kernel, 

and the task layer manipulates the kernel level tasks 
and user level tasks. Inter-task communication 
routines accomplish the messages transmission 
among time-sharing tasks. With such architecture, it 
is in fact designed as a micro kernel, based on which 
more components can be added to form a practical 
micro-kernel embedded operating system. 

• Beneficial for curriculum teaching and experiment. 
Embedded system related curriculums are already 
become necessary components for undergraduate 
computer majors. The micro kernel described in this 
paper is designed with GNU tool chain [7] in C and 
ARM based assembly. The codes count of the entire 
kernel is only about 3,000 lines, and simple, 
foundational and extensible. It can be provided to the 
students for learning and research, therefore is 
beneficial for curriculum teaching and experiment. 

This paper describes the design and implementation of 
this micro kernel in technical details, including the 
architecture of the kernel (boot layer, core layer and task 
layer), multi-task schedule strategy (priority for real-time and 
round-robin for time-sharing), IRQ handler, SWI handler, 
system calls, and inter-task communication based on which 
the micro-kernel architecture is constructed. 

II. ARCHITECTURE OF THE EMBEDDED OPERATING 

SYSTEM MICRO KERNEL 

An operating system can be created by partitioning it into 
smaller pieces, each of which should be a well-defined 
portion of the system, with carefully defined inputs, outputs, 
and functions [5]. Generally, the architectures of operating 
systems are different from each other, and the two well-
known types are micro kernel and monolithic kernel. 

A micro kernel can be quite small, consisting of only 
essential and necessary functions of an operating system. 
Windows and Minix are examples of system with such 
architectures. At the other extreme, a monolithic kernel may 
incorporate almost all the functions for an operating system 
into a very large kernel. Most versions of UNIX, as well as 
Linux, have this kind of kernels. For embedded operating 
systems, both architectures are in use. 

The embedded operating system micro kernel described 
in this paper is just a minimum one, as simple as possible for 
curriculum teaching, the architecture of which is divided into 
three layers: boot layer, core layer and task layer. The overall 
architecture of the micro kernel is shown in Fig. 1. 
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Figure 1.  The overall architecture of the embedded OS micro kernel 

A. Boot Layer 

The task of the boot layer is first booting the system from 
a kind of secondary storage such as FLASH memory, SD 
card or hard disks, etc., and then provides an appropriate 
hardware environment to the kernel. Considering the 
portability, this layer is generally designed as an independent, 
even separated, module such as that for embedded Linux or 
Windows CE, etc. [2] on some embedded development 
boards. In order to accommodate varies kinds of hardware 
environments, the boot layer described in this paper is 
designed as a self-adapted built-in boot loader which can 
recognize the different hardware structure automatically, 
load the kernel image accordingly,  and  then boot the system 
appropriately [6].  

The core of the layer includes the initialization of some 
hardware components such as watch dog, memory and 
system clock, automatic recognition of the booting address, 
setting of the stacks for every work mode, loading of the 
kernel codes, starting MMU, clearing BSS, etc. 

This layer consists of two program files, one in assembly 
and another in C. In fact, the assembly one forms the entire 
program frame of the micro kernel. In order to load the 
kernel codes from FLASH memory, some necessary 
functions to access FLASH memory is designed. Since there 
is only 4K SDRAM space, called steppingstone [8], at the 
lower end of the NAND FLASH memory space, it is worthy 
to note that the crucial codes for booting, including the 
functions of loading kernel codes, must be within the address 
range below 4K. Due to the limit of space, it is not described 
in details further. 

B. Core Layer 

Just as its name implies, the layer consists of the core 
components of the kernel, including IRQ handler, SWI 
handler, system calls, multi-task scheduler, inter-task 
communication, and other essential functions such as 
initializing kernel, creating task, etc. 

The task of the IRQ handler is processing the interrupt 
requirements of hardware. It is also the foundation of 
preemptive schedules. While on the other hand, SWI hander 
processes the software interrupts caused by the kernel, such 
as system calls. 

Multi-task scheduler performs the preemptive schedules 
among tasks, including two kinds of strategies, i.e. priority 
for real-time and round-robin for time-sharing. 

C. Task Layer 

This layer is made up of two kinds of tasks, that is, kernel 
level tasks and user level tasks, in which, Task_Sys is the 
most important one to perform the communications among 
other tasks via ITC (Inter-Task Communication) mechanism. 
In the current stage, it is the only system task besides 
Task_Idle. Based on ITC, other tasks essential to an 
embedded operating system such as file system can be added 
in near future. To show the effect, some user level tasks are 
also designed which will be described later in this paper. 

III. KEY TECHNIQUES FOR DESIGNING AN EMBEDDED 

OPERATING SYSTEM MICRO KERNEL 

A. Multi-Task Schedule 

For the purpose of research, two typical kinds of multi-
task schedule strategies are designed, which are priority for 
real-time and round-robin for time-sharing. 

1) Structure of task control block (TCB) 
Task control block (TCB) represents the existence of a 

task. The most important field of TCB is the status of the 
task, named state, which can be in several statuses such as 
RUNNING means to be ready to run, SENDING means to 
send message to other tasks, or RECEIVING means to 
receive message from another task. For priority schedule, the 
field prio is used to store the priority value of the task, while 
for round-robin schedule, two other fields, named slice and 
ticks, are used to store the designated time slice and its 
currently remained value, respectively. Other necessary 
fields are also needed, e.g. that related with TCB table, inter-
task communication, etc., which will be described later. 

2) Two schedule strategies 
Priority schedule is designed based on bitmap as the 

similar way as that in uC/OS [3] so the technical details are 
not described further.  

In order to be compatible with the priority schedule for 
real-time, the round-robin scheduled tasks are all designated 
with the lowest priority, named OS_LO_PRIO. That means 
only when all the real-time tasks are blocked can the time-
sharing tasks be scheduled. If no any task is ready then the 
idle task is scheduled, which in fact only a dummy function 
made up of a blank loop doing nothing [4]. 

There are several cases which may result in schedule, e.g. 
when a higher priority task is ready, a task is created, a task 
exits, a task is blocked when sending or receiving message, 
and an IRQ occurs, etc. 

3) Creation of task 
The starting of a task’s life cycle is the creation of it 

including three parts of operations, i.e. initializing task 
control table (TCB), initializing task stack, and trying a new 
schedule for the new task.  

The first part includes initializing the related fields of 
TCB, e.g. status and priority. For time-sharing tasks, the time 
slice fields, message fields and ITC related fields are also 
needed to be initialized. 

Since each task must have its own stack and the 
corresponding necessary register values must be saved when 
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task switching occurs, the structure of the task stack is 
particularly important.  

The second part of the task creation is just initializes the 
stack, the C codes of the function is shown in Fig. 2, in 
which get_cpsr() is a function in assembly to get the current 
value of register cpsr. 

 

 
Figure 2.  C codes of initializing task stack 

The last part invokes the task-level scheduler and the new 
task may be selected by the scheduler if the priority of the 
new task is the highest or the new task is the only ready one 
besides the idle task. 

B. IRQ Handler 

The main functions of IRQ are providing clock ticks 
periodically for schedule and software timer, invoking the 
scheduler to switch tasks. The performance of the IRQ 
handler will affect the quality of the entire system therefore it 
should be designed elaborately as far as possible. The frame 
of the handler is written in ARM assembly while the core 
routine is in C. 

Since the switching between tasks is implemented by 
interrupt, the starting of the first task (idle task) and the 
schedule in the task level (e.g. task creation or task exit) is in 
fact a kind of simulation of interrupt therefore the codes of 
which are similar to an IRQ handler. By this reason, the IRQ 
handler described in this paper is such designed that the two 
functions, idle task starting and tasks switching as mentioned 
above, are closely combined with the IRQ handler together 
so that the codes are pithy and compact. 

The handler invokes the interrupt handler routine in C 
first, the return value of which demonstrates whether task 
switching is needed (both real-time and time-sharing). If it is, 
then some related values are stored and then a C routine, 
named task_renew(), is invoked, the return value of which is 
the TCB of the new task. After the stack pointer being set to 
the new task’s stack, the interrupt returns and the task 
switching is accomplished.  

C. SWI Handler 

SWI handler is the foundation of an embedded operating 
system micro kernel by which the system calls and inter-task 
communication can implemented. 

It is worthy to note that the parameters of SWI are stored 
in r0, r1, r2 and r3 when the number of the parameters is not 

more than 4. That means in such a case the parameters can 
be used directly by invoked functions instead of being 
pushed onto stack. Since register r0 will be used to store the 
return value, it needs not to be saved therefore only r1-r12 
and r14 are pushed onto stack to be stored.  

The real processing of SWI is implemented by a function 
in C, named sysc_sched() which is in fact the main routine of 
system calls. After the function being invoked, the return 
value is stored in register r0. 

The system calls for the micro kernel described in this 
paper accomplishes two functions, i.e. formatted output, 
named cprintf() and inter-task communication. With cprintf(), 
user tasks can display message via UART without worry 
about synchronization and exclusion. 

D. Inter-Task Communication (ITC) 

Inter-task communication is an important mechanism for 
time-sharing multitasking environment. To implements inter-
task communication [5], some fields in TCB are needed. 

• p_msg: a pointer pointing to the buffer of message. 
The buffer is provided by tasks sending or receiving 
message instead of the kernel, and all the related 
message buffers is linked one by one to form a 
message queue. Obviously, the length of such a 
queue is not limited. That means the mechanism of 
inter-task communication is different from that of 
mail box or message queue for real-time tasks.  

• recv: task ID of another task from which task T waits 
to receive message. 

• send: task ID of another task to which task T sends 
the message but the destination has not gotten it yet. 

• q_send: if there are several tasks, say A, B, and C, 
sending messages to task T while the task T has not 
prepared to receive them, the tasks A, B, and C will 
form a queue as mentioned above and q_send of task 
T points to the first task in the queue. 

• q_next: The three tasks, A, B and C as just 
mentioned above form the queue according to the 
time sequence. Assume the destination task is T, 
then the field q_send in the TCB of T points to A, 
the q_next in the TCB of A points to B, that of B 
points to C, and that of C points to NULL. 
Obviously, by the TCB field q_next of each task, a 
link table of tasks is formed and the field q_send of 
task T is the head pointer of the table through which 
the messages can be received sequentially. 

When a task is sending or receiving message via inter-
task communication, its TCB field state may be in one of the 
following three statuses: 

• RUNNING: the task is running or ready to run; 
• SENDING: the task is in the status of sending 

message. Because the message is yet not arrived the 
destination, the task is blocked; 

• RECEIVING: the task is in the status of receiving 
message. Because the message is yet not received, 
the task is blocked. 

The algorithms of inter-task communication for the micro 
kernel in this paper are described in Fig. 3 and Fig. 4. 

OS_STK *task_stk_init (void (*task)(), void *args, 
OS_STK *sp) 
{ 

*(--sp) = (unsigned int) task;    /* save pc */ 
*(--sp) = (unsigned int) task;    /* save lr */ 
sp -= 13; 
memset(sp, sizeof(OS_STK) * 13, 0);   /* r0-r12: 0 */ 
*(--sp) = (DWORD)args;         /* r0: argument */ 
/* save CPSR */ 
*(--sp) = (unsigned int)(SYS_Mode & get_cpsr());    
return (sp);                               /* top of stack */ 

} 
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Figure 3.  The algorithm for task A sending message M to task B 

 
Figure 4.  The algorithm for task B receiving message 

It is worthy to note that each task maintains a message 
structure no matter it is sending or receiving except that the 
one for sending is filled with a message while the one for 
receiving is blank. With such a synchronization mechanism 
of ITC, only a task’s requirement is met can it be continue to 
run, otherwise it will be blocked with its status being 
designated as SENDING or RECEIVING. This kind of 
communication strategy is often known as “rendezvous”. 
Since no any extra message buffer needs to be maintained by 
the kernel, the implementation will be relatively simple. 

IV. A DEMO OF INTER-TASK COMMUNICATION 

To show the effect of inter-task communication using the 
micro kernel, some real-time as well as time-sharing tasks 
are designed, each of which periodically show a piece of 
message and then delay a while. The delay for the real-time 
tasks is implemented by the IRQ handler while that for time-
sharing tasks is by a function, get_ticks(), based on inter-task 
communication (ITC). Fig. 5 shows the C codes of the 
function and Fig. 6 shows the displays on the super terminal 
for the running of all the tasks. 

 
Figure 5.  Codes of get_ticks() 

 
Figure 6.  Displays of the tasks 

V. CONCLUSION 

Operating system is the essential component for general 
computer as well as embedded systems, of which the 
performance will affect directly the quality of the system. By 
this reason, it has been being a hot topic worthy to be 
researched deeply.  

The micro kernel described in this paper is developed on 
Linux platform with GNU tool chain, the purpose of which is 
to implement a pithy and compact ARM based embedded 
operating system micro kernel. Based on such a kernel, other 
components such as file system, network routines, etc., can 
be added to form a practical multi-task micro-kernel 
embedded operating system. Due to limitations on space, 
some technical details have been left out. 

REFERENCES 
[1] A. N. Sloss, D. Symes and C. Wright, ARM System Developer’s 

Guide: Designing and Optimizing System Software,  Elsevier Inc, 
2004 

[2] T. Noergaard, Embedded Systems Architecture: A Comprehensive 
Guide for Engineers and Programmers, Elsevier Inc, 2005 

[3] J. J. Labrosse, Micro C/OS-II the Real-Rime Kernel, 2e, CMP Media 
LLC, 2002 

[4] M. Barr and A. Massa, Programming Embedded Systems, Second 
Edition,  O’Reilly Media, Inc., 2006 

[5] A. S. Tanenbaum and A. S. Wookhull, Operating Systems: Design 
and Implementation, 3E, Prentice Hall, Inc., 2008 

[6] B. Qu, Design of Built-in Boot Loader for ARM uCOS, Proceedings 
of 2012 IEEE International Conference on Computer Science and 
Automation Engineering, vol 1, pp. 429-433, 2012 

[7] Stallman R M 2002 Using the GNU Compiler Collection 
(http://www.gnuarm.com/pdf/gcc.pdf) 

[8] ARM limited 2005 ARM Architecture Reference Manual 

 

 

Prepare the message M by source task A. 
Invoke function msg_send() via interface function 
sendrecv(). 
Check for whether a deadlock occurs. 
Check for whether the destination task B is waiting for 
receiving message from source task A. 
If yes, the message is copied to task B and then task B 
leaves the blocked state to continue to run. 
Otherwise, task A is blocked and added to the sending 
queue of task B. 

Prepare a blank structure M to receive message by 
destination task B. 
Invoke function msg_receive() via interface function 
sendrecv(). 
If task B is going to receive message from any task, then 
gets the first one from its sending queue (just mentioned 
above) if it exists and then copy it to M. 
If task B is going to receive message from a particular 
task A, the first thing to do is checking for whether task 
A is waiting for sending message to task B. If yes, copy 
the message from A to message structure M. 
If there is no task sending message to task B, the task B 
is blocked. 

int get_ticks() 
{ 

MESSAGE msg; 
reset_msg(&msg); msg.type = GET_TICKS; 
send_recv(TASK_SYS, &msg); 
return msg.RETVAL; 

} 
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