
Design of ARM Based Embedded Operating System Micro Kernel

Bo Qu
School of Mathematics and Information Technology

Nanjing Xiaozhuang University
Nanjing, China

e-mail: Mr.QuBo@126.com

Zhaozhi Wu
School of Mathematics and Information Technology

Nanjing Xiaozhuang University
Nanjing, China

e-mail: wzz5958@126.com

Abstract—This paper describes the design and implementation
of an ARM based embedded operating system micro kernel
developed on Linux platform with GNU tool chain in technical
details, including the three-layer architecture of the kernel
(boot layer, core layer and task layer), multi-task schedule
(priority for real-time and round-robin for time-sharing), IRQ
handler, SWI handler, system calls, and inter-task
communication based on which the micro-kernel architecture
is constructed. On the foundation of this micro kernel, more
components essential to a practical operating system, such as
file system and TCP/IP processing, can be added in order to
form a real and practical multi-task micro-kernel embedded
operating system.

Keywords-embedded operating system; micro kernel; ARM;
multi-task schedule; inter-task communication

I. INTRODUCTION

With the rapid developments of electronic and computer
technologies, operating system has already been an essential
and necessary component of an embedded system. Although
some famous embedded operating systems have been already
developed and used, such as VxWorks, QNX, Embedded
Linux, Windows CE, uC/OS, eCos, etc., due to the dedicated
features, various types of embedded operating systems are
needed to meet the requirements of the field [1]. It is
obviously necessary and valuable to enhance the research on
the design and development of embedded operating systems.

The ARM based embedded operating system micro
kernel developed by the author of this paper is just a good
attempt, in which the inter-task communication lays the
foundation of the micro-kernel. The main contributions of
this embedded operating system micro kernel are:

• Both real-time and time-sharing scheduling. As we
know, real-time system is an important application
field of embedded systems. While on the other hand,
time-sharing tasking is also popularly required, e.g.
various kinds of Web based embedded control or
management systems. The micro kernel described in
this paper is designed to implement both kinds of
schedules. The priority schedule is used for real-time
tasks and round-robin for time-sharing ones.

• Three-layer architecture. The kernel is designed as a
three-layer system and all the manipulations of the
kernel are elaborately designated to each of them.
For example, the boot layer responds for the booting
and initialization of the operating system, the core
layer for the internal manipulations of the kernel,

and the task layer manipulates the kernel level tasks
and user level tasks. Inter-task communication
routines accomplish the messages transmission
among time-sharing tasks. With such architecture, it
is in fact designed as a micro kernel, based on which
more components can be added to form a practical
micro-kernel embedded operating system.

• Beneficial for curriculum teaching and experiment.
Embedded system related curriculums are already
become necessary components for undergraduate
computer majors. The micro kernel described in this
paper is designed with GNU tool chain [7] in C and
ARM based assembly. The codes count of the entire
kernel is only about 3,000 lines, and simple,
foundational and extensible. It can be provided to the
students for learning and research, therefore is
beneficial for curriculum teaching and experiment.

This paper describes the design and implementation of
this micro kernel in technical details, including the
architecture of the kernel (boot layer, core layer and task
layer), multi-task schedule strategy (priority for real-time and
round-robin for time-sharing), IRQ handler, SWI handler,
system calls, and inter-task communication based on which
the micro-kernel architecture is constructed.

II. ARCHITECTURE OF THE EMBEDDED OPERATING

SYSTEM MICRO KERNEL

An operating system can be created by partitioning it into
smaller pieces, each of which should be a well-defined
portion of the system, with carefully defined inputs, outputs,
and functions [5]. Generally, the architectures of operating
systems are different from each other, and the two well-
known types are micro kernel and monolithic kernel.

A micro kernel can be quite small, consisting of only
essential and necessary functions of an operating system.
Windows and Minix are examples of system with such
architectures. At the other extreme, a monolithic kernel may
incorporate almost all the functions for an operating system
into a very large kernel. Most versions of UNIX, as well as
Linux, have this kind of kernels. For embedded operating
systems, both architectures are in use.

The embedded operating system micro kernel described
in this paper is just a minimum one, as simple as possible for
curriculum teaching, the architecture of which is divided into
three layers: boot layer, core layer and task layer. The overall
architecture of the micro kernel is shown in Fig. 1.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2040

Figure 1. The overall architecture of the embedded OS micro kernel

A. Boot Layer

The task of the boot layer is first booting the system from
a kind of secondary storage such as FLASH memory, SD
card or hard disks, etc., and then provides an appropriate
hardware environment to the kernel. Considering the
portability, this layer is generally designed as an independent,
even separated, module such as that for embedded Linux or
Windows CE, etc. [2] on some embedded development
boards. In order to accommodate varies kinds of hardware
environments, the boot layer described in this paper is
designed as a self-adapted built-in boot loader which can
recognize the different hardware structure automatically,
load the kernel image accordingly, and then boot the system
appropriately [6].

The core of the layer includes the initialization of some
hardware components such as watch dog, memory and
system clock, automatic recognition of the booting address,
setting of the stacks for every work mode, loading of the
kernel codes, starting MMU, clearing BSS, etc.

This layer consists of two program files, one in assembly
and another in C. In fact, the assembly one forms the entire
program frame of the micro kernel. In order to load the
kernel codes from FLASH memory, some necessary
functions to access FLASH memory is designed. Since there
is only 4K SDRAM space, called steppingstone [8], at the
lower end of the NAND FLASH memory space, it is worthy
to note that the crucial codes for booting, including the
functions of loading kernel codes, must be within the address
range below 4K. Due to the limit of space, it is not described
in details further.

B. Core Layer

Just as its name implies, the layer consists of the core
components of the kernel, including IRQ handler, SWI
handler, system calls, multi-task scheduler, inter-task
communication, and other essential functions such as
initializing kernel, creating task, etc.

The task of the IRQ handler is processing the interrupt
requirements of hardware. It is also the foundation of
preemptive schedules. While on the other hand, SWI hander
processes the software interrupts caused by the kernel, such
as system calls.

Multi-task scheduler performs the preemptive schedules
among tasks, including two kinds of strategies, i.e. priority
for real-time and round-robin for time-sharing.

C. Task Layer

This layer is made up of two kinds of tasks, that is, kernel
level tasks and user level tasks, in which, Task_Sys is the
most important one to perform the communications among
other tasks via ITC (Inter-Task Communication) mechanism.
In the current stage, it is the only system task besides
Task_Idle. Based on ITC, other tasks essential to an
embedded operating system such as file system can be added
in near future. To show the effect, some user level tasks are
also designed which will be described later in this paper.

III. KEY TECHNIQUES FOR DESIGNING AN EMBEDDED

OPERATING SYSTEM MICRO KERNEL

A. Multi-Task Schedule

For the purpose of research, two typical kinds of multi-
task schedule strategies are designed, which are priority for
real-time and round-robin for time-sharing.

1) Structure of task control block (TCB)
Task control block (TCB) represents the existence of a

task. The most important field of TCB is the status of the
task, named state, which can be in several statuses such as
RUNNING means to be ready to run, SENDING means to
send message to other tasks, or RECEIVING means to
receive message from another task. For priority schedule, the
field prio is used to store the priority value of the task, while
for round-robin schedule, two other fields, named slice and
ticks, are used to store the designated time slice and its
currently remained value, respectively. Other necessary
fields are also needed, e.g. that related with TCB table, inter-
task communication, etc., which will be described later.

2) Two schedule strategies
Priority schedule is designed based on bitmap as the

similar way as that in uC/OS [3] so the technical details are
not described further.

In order to be compatible with the priority schedule for
real-time, the round-robin scheduled tasks are all designated
with the lowest priority, named OS_LO_PRIO. That means
only when all the real-time tasks are blocked can the time-
sharing tasks be scheduled. If no any task is ready then the
idle task is scheduled, which in fact only a dummy function
made up of a blank loop doing nothing [4].

There are several cases which may result in schedule, e.g.
when a higher priority task is ready, a task is created, a task
exits, a task is blocked when sending or receiving message,
and an IRQ occurs, etc.

3) Creation of task
The starting of a task’s life cycle is the creation of it

including three parts of operations, i.e. initializing task
control table (TCB), initializing task stack, and trying a new
schedule for the new task.

The first part includes initializing the related fields of
TCB, e.g. status and priority. For time-sharing tasks, the time
slice fields, message fields and ITC related fields are also
needed to be initialized.

Since each task must have its own stack and the
corresponding necessary register values must be saved when

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2041

task switching occurs, the structure of the task stack is
particularly important.

The second part of the task creation is just initializes the
stack, the C codes of the function is shown in Fig. 2, in
which get_cpsr() is a function in assembly to get the current
value of register cpsr.

Figure 2. C codes of initializing task stack

The last part invokes the task-level scheduler and the new
task may be selected by the scheduler if the priority of the
new task is the highest or the new task is the only ready one
besides the idle task.

B. IRQ Handler

The main functions of IRQ are providing clock ticks
periodically for schedule and software timer, invoking the
scheduler to switch tasks. The performance of the IRQ
handler will affect the quality of the entire system therefore it
should be designed elaborately as far as possible. The frame
of the handler is written in ARM assembly while the core
routine is in C.

Since the switching between tasks is implemented by
interrupt, the starting of the first task (idle task) and the
schedule in the task level (e.g. task creation or task exit) is in
fact a kind of simulation of interrupt therefore the codes of
which are similar to an IRQ handler. By this reason, the IRQ
handler described in this paper is such designed that the two
functions, idle task starting and tasks switching as mentioned
above, are closely combined with the IRQ handler together
so that the codes are pithy and compact.

The handler invokes the interrupt handler routine in C
first, the return value of which demonstrates whether task
switching is needed (both real-time and time-sharing). If it is,
then some related values are stored and then a C routine,
named task_renew(), is invoked, the return value of which is
the TCB of the new task. After the stack pointer being set to
the new task’s stack, the interrupt returns and the task
switching is accomplished.

C. SWI Handler

SWI handler is the foundation of an embedded operating
system micro kernel by which the system calls and inter-task
communication can implemented.

It is worthy to note that the parameters of SWI are stored
in r0, r1, r2 and r3 when the number of the parameters is not

more than 4. That means in such a case the parameters can
be used directly by invoked functions instead of being
pushed onto stack. Since register r0 will be used to store the
return value, it needs not to be saved therefore only r1-r12
and r14 are pushed onto stack to be stored.

The real processing of SWI is implemented by a function
in C, named sysc_sched() which is in fact the main routine of
system calls. After the function being invoked, the return
value is stored in register r0.

The system calls for the micro kernel described in this
paper accomplishes two functions, i.e. formatted output,
named cprintf() and inter-task communication. With cprintf(),
user tasks can display message via UART without worry
about synchronization and exclusion.

D. Inter-Task Communication (ITC)

Inter-task communication is an important mechanism for
time-sharing multitasking environment. To implements inter-
task communication [5], some fields in TCB are needed.

• p_msg: a pointer pointing to the buffer of message.
The buffer is provided by tasks sending or receiving
message instead of the kernel, and all the related
message buffers is linked one by one to form a
message queue. Obviously, the length of such a
queue is not limited. That means the mechanism of
inter-task communication is different from that of
mail box or message queue for real-time tasks.

• recv: task ID of another task from which task T waits
to receive message.

• send: task ID of another task to which task T sends
the message but the destination has not gotten it yet.

• q_send: if there are several tasks, say A, B, and C,
sending messages to task T while the task T has not
prepared to receive them, the tasks A, B, and C will
form a queue as mentioned above and q_send of task
T points to the first task in the queue.

• q_next: The three tasks, A, B and C as just
mentioned above form the queue according to the
time sequence. Assume the destination task is T,
then the field q_send in the TCB of T points to A,
the q_next in the TCB of A points to B, that of B
points to C, and that of C points to NULL.
Obviously, by the TCB field q_next of each task, a
link table of tasks is formed and the field q_send of
task T is the head pointer of the table through which
the messages can be received sequentially.

When a task is sending or receiving message via inter-
task communication, its TCB field state may be in one of the
following three statuses:

• RUNNING: the task is running or ready to run;
• SENDING: the task is in the status of sending

message. Because the message is yet not arrived the
destination, the task is blocked;

• RECEIVING: the task is in the status of receiving
message. Because the message is yet not received,
the task is blocked.

The algorithms of inter-task communication for the micro
kernel in this paper are described in Fig. 3 and Fig. 4.

OS_STK *task_stk_init (void (*task)(), void *args,
OS_STK *sp)
{

(--sp) = (unsigned int) task; / save pc */
(--sp) = (unsigned int) task; / save lr */
sp -= 13;
memset(sp, sizeof(OS_STK) * 13, 0); /* r0-r12: 0 */
(--sp) = (DWORD)args; / r0: argument */
/* save CPSR */
*(--sp) = (unsigned int)(SYS_Mode & get_cpsr());
return (sp); /* top of stack */

}

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2042

Figure 3. The algorithm for task A sending message M to task B

Figure 4. The algorithm for task B receiving message

It is worthy to note that each task maintains a message
structure no matter it is sending or receiving except that the
one for sending is filled with a message while the one for
receiving is blank. With such a synchronization mechanism
of ITC, only a task’s requirement is met can it be continue to
run, otherwise it will be blocked with its status being
designated as SENDING or RECEIVING. This kind of
communication strategy is often known as “rendezvous”.
Since no any extra message buffer needs to be maintained by
the kernel, the implementation will be relatively simple.

IV. A DEMO OF INTER-TASK COMMUNICATION

To show the effect of inter-task communication using the
micro kernel, some real-time as well as time-sharing tasks
are designed, each of which periodically show a piece of
message and then delay a while. The delay for the real-time
tasks is implemented by the IRQ handler while that for time-
sharing tasks is by a function, get_ticks(), based on inter-task
communication (ITC). Fig. 5 shows the C codes of the
function and Fig. 6 shows the displays on the super terminal
for the running of all the tasks.

Figure 5. Codes of get_ticks()

Figure 6. Displays of the tasks

V. CONCLUSION

Operating system is the essential component for general
computer as well as embedded systems, of which the
performance will affect directly the quality of the system. By
this reason, it has been being a hot topic worthy to be
researched deeply.

The micro kernel described in this paper is developed on
Linux platform with GNU tool chain, the purpose of which is
to implement a pithy and compact ARM based embedded
operating system micro kernel. Based on such a kernel, other
components such as file system, network routines, etc., can
be added to form a practical multi-task micro-kernel
embedded operating system. Due to limitations on space,
some technical details have been left out.

REFERENCES
[1] A. N. Sloss, D. Symes and C. Wright, ARM System Developer’s

Guide: Designing and Optimizing System Software, Elsevier Inc,
2004

[2] T. Noergaard, Embedded Systems Architecture: A Comprehensive
Guide for Engineers and Programmers, Elsevier Inc, 2005

[3] J. J. Labrosse, Micro C/OS-II the Real-Rime Kernel, 2e, CMP Media
LLC, 2002

[4] M. Barr and A. Massa, Programming Embedded Systems, Second
Edition, O’Reilly Media, Inc., 2006

[5] A. S. Tanenbaum and A. S. Wookhull, Operating Systems: Design
and Implementation, 3E, Prentice Hall, Inc., 2008

[6] B. Qu, Design of Built-in Boot Loader for ARM uCOS, Proceedings
of 2012 IEEE International Conference on Computer Science and
Automation Engineering, vol 1, pp. 429-433, 2012

[7] Stallman R M 2002 Using the GNU Compiler Collection
(http://www.gnuarm.com/pdf/gcc.pdf)

[8] ARM limited 2005 ARM Architecture Reference Manual

Prepare the message M by source task A.
Invoke function msg_send() via interface function
sendrecv().
Check for whether a deadlock occurs.
Check for whether the destination task B is waiting for
receiving message from source task A.
If yes, the message is copied to task B and then task B
leaves the blocked state to continue to run.
Otherwise, task A is blocked and added to the sending
queue of task B.

Prepare a blank structure M to receive message by
destination task B.
Invoke function msg_receive() via interface function
sendrecv().
If task B is going to receive message from any task, then
gets the first one from its sending queue (just mentioned
above) if it exists and then copy it to M.
If task B is going to receive message from a particular
task A, the first thing to do is checking for whether task
A is waiting for sending message to task B. If yes, copy
the message from A to message structure M.
If there is no task sending message to task B, the task B
is blocked.

int get_ticks()
{

MESSAGE msg;
reset_msg(&msg); msg.type = GET_TICKS;
send_recv(TASK_SYS, &msg);
return msg.RETVAL;

}

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2043

