
Design and Implementation of Distributed Crawler System for Opinion Mining

Yunqi Gao, Chunlin Peng
Research Institute of Elect Science and Technology of UESTC

University of Electronic Science and Technology of China
Chengdu, China

{mopyfish, peng_chunlin}@163.com

Abstract—With the development of Internet, Network public
opinion has been serving an import role in reflection of social
public opinion. As there are a large number of websites and
forums on the Internet, we need a powerful crawler system
which can meet the demands of opinion mining. However,
common crawler systems concern more about ranking and
recommendation algorithms, which is less important in opinion
mining. In this article, we introduced the design and
implementation of a distributed crawler system for opinion
mining. We also introduced some extra parameters such as
keywords count and published time into the ranking and
refreshing strategies. Experimental results demonstrate that
the system can well support different sites, and the improved
strategies can greatly enhance the crawling and monitoring
efficiency.

Keywords-distributed system; crawler; public opinion;
PageRank;

I. INTRODUCTION

As the continuous development of Internet, it has become
the fourth media following the traditional media, and it has
made comprehensive and profound impacts on people’s daily
life. In Web 2.0 era, platforms such as forum, blog and
microblog provide a wider channel to express people’s views,
and traditional news websites are improving their interactive
features, so that people can participate in the discussion of
hot events [1]. For government, in order to master the latest
network public opinion, an efficient and accurate opinion
monitoring system which can cover major websites has
become and actual demand.

Distributed crawler system is the basis for opinion
monitoring system, and its speed and support of websites
will directly affect the subsequent analysis process [2].
Different from general crawlers, crawler using in opinion
monitoring systems are well targeted. In default settings, the
crawler will only focus on news sites, forums, blogs and
microblogs where there exist frequent interactions, which
requires the crawler can not only support the dynamic pages,
but also can adjust its crawling frequency according to the
analysis result.

In this article, we purposed the crawler system Yakamoz
for the field of opinion monitoring. It support the crawling of
major websites (including the comment of the news), and can
adjust its crawling strategy in realtime according to the
analysis result.

II. INTRODUCTION OF DISTRIBUTED CRAWLER

Web crawler is one of the most important modules for
search engines as well as related data mining systems [3].
Generally, the crawler downloads html source code of the
web pages, and uses regular expression to find all URLs in
the downloaded pages, and use these URLs as seeds for next
turn of download. To collect information efficiently, we
often use distributed crawler to do parallelized crawling.

When we need to extract specific information from the
page, we can integrate extra modules into the crawler to
make it a vertical crawler [4]. For examples, we can build
templates (no matter by regular expression or by DOM
parsing) to extract certain fields, or use Javascript engines to
parse dynamic pages [5].

Besides the architecture of the system, there also can be
improvements in related algorithms, including traditional
PageRank algorithm [6]. For example, we can rank the pages
by user’s interest as well as relation of links [7].

III. DESGIN AND IMPLEMENTATION OF THE SYSTEM

Yakamoz is a distributed master-slave crawler system,
which comprises of a central control node, a crawler
manager (master node) with a backup node, and several
crawler (slave) nodes. Besides, the system provides a series
of interfaces, by which the crawler can be directly connected
to the analyzing system, and get the result for feedback. The
overall architecture of the system is shown in Fig. 1.

Figure 1. Architecture of the system

Besides the crawlers, the system provides a front end for
management, by which users can configure the rules and
strategies of the crawlers, as well as view the status. When
integrated with public opinion analysis system, the crawler
system can share the front end with the opinion system.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2052

A. Crawler Manager

Crawler manager is the core of the whole system,
including task and strategy parsing module, URL
management module and task scheduling module. Its
workflow is shown in Fig. 2.

Figure 2. Workflow of crawler manager

1) Task and stragety parsing: In this system, each site
corresponds to a strategy file, which describes the starting
URLs (seeds), crawling interval, number of threads and the
downloader (A module to download webpages) using for
this site. In the startup period, the manager will check
whether there are modifications, if any, it will synchronize
the modifications to all slave nodes. Besides, it will merge
the seeds of all files into the management module as the
total task.

2) URL management: In the master node, we use a
bloom filter to store crawled URLs. Considering the actual
scale of deployment, the filter is deployed on master node,
instead of on each of the slaves, so the master node can
deploy the task to any idle node and don’t need to consider
the partitioning, which makes the load balance more
effective. For URL storage, we use a five-level priority
queue, and by default all URLs are treated as level 3.
Besides, in each level of the queue, the URLs are grouped
by their hash values, so that the crawler will visit different
sites in one time. Considering the master node may crash,
the queue and the filter will be stored in the database
periodically, so when the master node fails, the backup
master node will resume the status from the database, thus
minimum the impact of the node failure.

3) Task scheduling: By default, the task scheduling
module will split the task into fragments, each of which has
a size of 100-200 URLs, and deploy them to different
crawlers. At the same time, the module will maintain the
status of each crawler and task. Every 60 seconds, the
module will send a heartbeat packet to the crawlers to get
their status. For a task, if it isn’t submitted in certain time
(by default URL numbers x 5 seconds), the module will fail
this job and deploy it to another crawler. As each of the
tasks has a unique number, so the module can check this
number to avoid repeatedly submitting.

B. Crawler

The crawler is the performer of specific tasks, and
consists of a crawler controller, a downloader factory and
several working threads. The workflow is shown in Fig. 3.

Figure 3. Workflow of crawler

1) Crawler controller: This module is to control the
entire operation of the crawler, and in charge of the
communication to the master node. Task control module is
responsible for task parsing and result submitting, as well as
timeout control. Thread pool control module is responsible
for managing all working threads, and restart the
corresponding thread if it fails. To reduce the load of the
database, the temporary result will be first stored in the local
storage and submitted to the database when the task is
finished. If a task failed repeatedly, the controller will store
it to the local disk for later analysis.

2) Downloader factory: To ensure the performance of
multi-thread download, each thread can obtain the instances
of all downloaders except the Webkit downloader
considering its resources consumption. At present, there are
three kinds of downloaders in the system.

• Default downloader: Fastest of all downloaders,
generally used to download static webpages, also
support user-define HTTP headers and proxies.

• Login downloader: Login downloader can store the
usernames and passwords of the websites, and
mainly used to visit microblogs and forums.

• Webkit downloader: Webkit downloader uses the
Webkit browser kernel provided by QT to visit
dynamic pages, and support AJAX calls, and can be
used to download the comments of news or the
homepage of microblog. Considering its resources
consumption, there’s only one instance in the system,
and all threads call it serially.

IV. ALGORITHMS AND STATIGIES IN THE SYSTEM

A. Task scheduling strategy

Task scheduling strategy includes two parts: Task
deploying and result processing. The description of task
deploying is as follows:

a) Traverse crawler list QC, find a crawler CIDLE which
status is IDLE;

Local bloom filter

Local URL queue

Site strategies

Thread pool
controller

T
h
r
e
a
d
s

Result storage

Task control

Site templates

Default
Downloader

Login
Downloader

Webkit
Downloader

Crawler
Manager Internet

Downloader factory

Crawler controller

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2053

