
Optimization of history tree in 3DR-tree index structure

Zhang Zhi-tong
Faculty of Technology, Harbin University

Harbin,china
sjzzt@hrbu.edu.cn

Abstract—Many optimizations have been done to 3DR-tree
index structure and many opinions have been proposed.
Modification by splitting mechanism is one of them. There are
two index trees in 3DR-tree index structure after modification:
one is a history tree for past data storage and the other is an
active tree for current data storage. In this article,
optimization of history tree is firstly done and is proved
theoretically. Then a correspondent insert algorithm is
designed.

Keywords-3DR-tree; index structure; R*-Tree structure
model; history data insert algorithm

I. .FACTORS FOR INSPECTION

Based on structure algorithm[1] of R*-Tree[2], while
inserting a new record, the optimization of 3DR-tres[3]
index structure is investigated from the following aspects:
area and circumference of MBR, coverage area between
MBR within a same node, as well as the distance from
center of MBR to center of node which contains the MBR.

II. STRUCTURE MODEL

In history tree, existence of large amount of blank space
influences searching efficiency, e.g. searching section may
intersect with node’s MBR but without actual object exists
in the intersection, or visiting unwanted nodes[4]. In the case
of spatial-temporal data processed in 3DR-tree, the time
dimension continuously expends upwardly along with
increasing update time t in spatial-temporal object data,
which induces a large proportion of MBR is occupied by
blank space. Therefore, it is considered to take blank space
as an inserted cost function in order to control the increasing
blank space of nodes in 3DR-tree structure algorithm. This
modification has the advantages of more compacted nodes, a
reducing possibility of intersection between search space
and blank space of node MBR, and an improved searching
efficiency.

• Definition 1: Blank space. In 3DR tree, the blank
space in a node is defined as the area of the space
which is not covered by real object, expressed as:

Dead_Space(Nodeo)=Coverage(o)-Area(o) （1）
• Definition 2: Insert cost function. By setting leave

node layer level=0，root_level represents the layers
of root nodes, and then the cost function of history
tree during inserting is defined as below:

Δ
=)(oAreaCost

 1<=node level<=root_level

Δ
= spacedeadCost _

 node level = 0 （2）
Where, Area is node area, and Coverage is the actual

covered area. At the same time, while inserting a new record,
in non-leave node layer, the node with minimum sum area
increment is selected by history tree to be the insert node for
next step. A smaller node area will be selected if area
increments are equal. The efficiency of this method is
lowered when several nodes have an identical or similar area
increment. As shown in Figure 1(in this case, a 2D data is
used for demonstration. 3D has a similar form to 2D), h, i,
and j are child nodes; a, b…g are both child nodes
corresponding to h, i and j and the leave nodes of the upper
level nodes. The layer of node is indicated by level. The
leave node level=0 is thus defined in history tree. Record p
is assumed to be inserted to the position as shown in Figure
1. According to algorithm of 3DR-tree, inserting p into
neither node h nor node j will enlarge the node area. Under
this circumstance, a node with a smaller area is selected,
which is node h. Then, node h chooses a node with
minimum sum area expansion caused by insertion as the
node for next insertion step, which is node e. However, the
best choice to insert record p is node a because node a
causes its area expansion is far smaller than node e. In this
case, the each step of insert algorithm used in 3DR-tress
could only obtain an optimum insert choice for next step,
instead of an optimum result for the overall system.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2078

Fig.1 Inserting cost of 3DR-tree

Thus it is considered to use minimal cost priority

algorithm while inserting a new record into history tree. The
cost parameter is set as the summation of area expansion of
all the nodes after insertion in the insert path from root node
to node level=1.

According to inset cost function, an overall optimum
insert path is selected as the path from root node to node
level=1, during inserting a new record. This path satisfies
the minimal sum area increments of all nodes, after the
record is inserted along the path. Then, according to this
path, the leave node with minimum dead_space increment
after record insertion, is selected from child nodes of node
level=1 to finish insertion process.

III. HISTORY DATA INSERT ALGORITHM

The partially long lasting [5] (partial persistent) index
data has all history versions for data storage. However, only
the current version is updatable. There is no physical
deletion in Spatio-temporal index. Updating data only
changes the now to a specific time value t2 in time interval
[t1，now] for object’s current data item. The previous data
item becomes(o_id，sj，[t1，t2]) as read-only history data
and meanwhile new data item (o_id，sj，[t2，now]) is
inserted into index structure. The index data update
algorithm given below contains two parts: update current
time data item in R1; insert history data into R2.

While inserting a new mobile object data to history tree,
unlike, differing from inserting by layers according to
greedy policy in 3DR-tree, history tree first get overall
optimum insert path according to choose-path[6] algorithm
and then insert record by this path.

A. The Basic Logic of Algorithm

The basic logic of algorithm is to expand a node,
selected from all the expandable nodes, having a minimal
parameter. This enables an overall viewpoint. Take Figure 1
as an example, setting r as root node, the procedure of

searching optimum insert path by Choose Path algorithm can
be described as:

• Initially, priority queue PQ is {<(r)，0>}. Insert into
PQ the path obtained by expanding the child node of
r, and get{<(h，r)，0>，<(j，r)，0>，<(i，r)，
16>} after delete the first record <(r)，0> in PQ to.
Each value represents the value of cost parameter
after p is inserted into this path. Insertion of p into
node h or node j will not increase node area,
therefore the cost parameter is 0 but the area is
increased by 16 after node i is inserted.

• Visit node h in the first item of PQ, insert another
two path (e，h，r) and (d，h，r) to PQ and then
delete <(h，r)，0> from PQ. PQ={<(j，r)，0>，
<(e，h，r)，14>，<(d，h，r)，13>，<(i，r)，
16}. Path (e，h，r) and path (d，h，r)has reached
the node of le, and will not continue.

• Expand path (j，r) in the first item, and insert path
(a，j，r)，(b，j，r)and (c，j，r) into priority
queue; PQ={<(a， j， r)， 12>，<(e， h， r)，
14>，<(d，h，r)，13>，<(c，j，r)，13>，<(i，
r)，16>，<(b，j，r)，14>}. At this moment, a
path (a，g，r)leads to node of le by minimum cost
is found and(a，g，r) is the path of final selection.

• While selecting leave node, the node with minimum
dead_space increment after inserting p is selected
from child nodes of node a for nest step insertion,
which ensures the all insert path from root node to
leave node. During application, utilizing a sample of
a heap path_heap is applied to realize priority queue.
Each heap entry of path_heap contains properties:
son, path and cost. The son indicates the id of the
node for visit in next step. Cost=∑ervery
nodeo Area(o)△ .The path records the path being
visited currently, which is also the sum area
increment in the path after new record is contained
in every node. The o is the node in path.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2079

B. Definition

• Definition 3: Status. In history tree, status is defined
as the saved path from root node to middle node
items in priority queue PQ. Its form is represented as
<N1，N2，…Nk>, where N1 is root node and
Ni+1 is the child node of Ni(1<=i<=k-1).
1<=Nk.level<=root_level.

• Definition 4: Descendant and direct descendant. A
status descendant is defined the descendant path
generated by this status. Its form is defined as:
assuming <N1，N2，…Nk> is a status and then its
descendant is <N1，N2，…Nk，Nk+1，…Nh >;
Ni+1 is the child node (k+1<=i<=h-1) of Ni and
1<N<=h.level<=root_level. In the case h=k+1, the
descendant is called direct descendant.

C. Provement

Theorem: Choose Path algorithm can be stopped within
a limited steps and find a optimum path satisfying minimum
cost parameter Cost=∑ervery nodeo Area(o)△ .

The provement is done as follows：
• Firstly, there must be an optimum path from initial

node (root node) to target node (node level=1). Due
to the limited height of history tree, the path from
initial node to target node has a finite number,
among which one or more path must exist to enable
the minimum cost parameter.

• Secondly, before algorithm terminates, each
optimum path has a status in priority queue PQ.

• In factor, every path from initial node to target node
has a status in priority queue PQ. This is because
that starting from initial node, every descendent
generated by current status will be inserted into PQ.
The current status will not be deleted from PQ
unless all the descendents are generated. Now,
assuming the status N=<N1，N2，…Nk> is one
status in optimum path, there are finite status before
N in PQ at any designated moment. The finite status
is called first generation status where the minimum
cost parameter is a1.

• The direct descendent of first generation status is
called second generation status, where the minimum
cost parameter is a2. Assuming the cost parameter
increased by e after each descendent is generated
from a status, then a2>=al+e, and aj>=a1+(j-1)e in
general. Assuming the cost parameter of optimum

path is c, then aj>=c when j is large enough. This
shows that the descendents generated from the first
generation status has only finite generations before
N. It will be deleted from PQ because every status
has finite direct descendents. Therefore, S will
become the first status in PQ after finite steps. Again,
algorithm inevitably reaches target status T and stop
after finite steps because of the finite status in
optimum path. This is the optimum solution.

• If algorithm stops before reaching T, this means
another target status or another path is found. This is
also an optimum solution because the status in PQ is
queued by cost parameter value.

Comparing to 3DR-tree algorithm, more node visits are
required for Choose Path to find optimum insert path by
minimum cost priority algorithm at node level>0. However,
Choose Path algorithm generates better tree structure and
improves search efficiency finally.

IV. CONCLUSION

Based on structure algorithm of R*-Tree, out work
introduces dead_space as cost parameter which enables an
overall optimum solution search and improves the modified
3DR-tree. Moreover, according to feathers of current model
and combining general indexing method of R-tress structure,
an insert algorithm is proposed to realize a 3DR-tree index
structure. Then insert algorithm is demonstrated from the
aspect of history date.

REFERENCE
[1] PATEL J M, CHEN Y, CHALLA V P. STRIPES: An Efficient
Index for Predicted Trajectories[C]. In Proc.of the ACM SIGMOD
Intl.Conf.on Management of Data, Paris, France, 2007: 637-646.

[2] GUTTMAN A. R-trees: A Dynamic Index Structure for Spatial
Searching[C]. In: Proe. Of the ACMSIGMOD, Boston, MA ACMPress,
1984: 47-57.

[3] TAO Y, PAPADIAS D. MV3R-tree: A Spatio-Temporal Access
Method for Timestamp and Interval Queries[C]. Proceedings of the 27th
International Conference on Very Large Databases, San Francisco, 2001:
431-440.

[4] PATEL J M, CHEN Y, CHALLA V P. STRIPES: An Efficient
Index for Predicted Trajectories[C]. In Proc.of the ACM SIGMOD
Intl.Conf.on Management of Data, Paris, France, 2007: 637-646.

[5] PFOSER D, JENSEN C, THEODORIDIS Y. Novel Approaches in
Query Processing for Moving Object Trajectories[C]. In Proceedings of
26th International Conference on Very Large Data Bases, Cairo, Egypt.
2000: 395-406.

[6] TAO Y, PAPADIAS D, SUN J. The TPR*-Tree: An Optimized
Spatio-Temporal Access Method for Predictive Queries[C]. In Proc.Of the
Intl.Conf. On Vary Large Data Bases, VLDB, Rome, Italy, 2006: 431-440.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2080

